IMAGINE THE POSSIBILITIES...
Using Machine Learning to Automate Node Split Design and HFC Augmentation Options

Keith R. Hayes
Chief Executive Officer
IMMCO, Inc.
Using Machine Learning to Automate Node Split and HFC Augmentation Options

Agenda

- Key Network Datapoints – United States HFC Networks
- Overview of Artificial Intelligence (AI) and Machine Learning (ML)
- HFC Network Capacity Augmentation Methods
- Implementing Machine Learning for Node Split Design
- Machine Learning Node Split Design Example
- Creating a Holistic Network Capacity Augmentation Environment enabled by Machine Learning
- Conclusion
United States HFC Network Statistics

- >300,000 Nodes
- >700,000 Power Supplies
- ~2,000,000 HFC Plant Miles
- >70,000,000 US MSO Internet Customers
- >40% CAGR Broadband Consumption
- Streaming Video, Game Streaming, AR/VR
- COVID-19 induced telework and virtual classrooms driving increased data use.
Artificial Intelligence (AI) and Machine Learning (ML)

Artificial Intelligence – computer systems developed to perform tasks humans typically do better:
- Robotic Welder
- Recommendations from online retailer or video streaming service.
- Real-time traffic-monitored route planning – e.g. GoogleMaps/Waze

Machine Learning – builds on AI by enabling computer systems to measure performance and improve outputs
- Robotic welder with x-ray scanner to monitor and improve weld quality
- Photoscanning to identify friends in social media posts
- Voice-to-text and language translation
Inside Plant Options:
• Activate unused or repurpose EIA’s
• Service Group de-combine/re-combine
• Increase modulation density (64-256 QAM, OFDM)

Outside Plant Options:
• Extend fiber to heavy-use households to de-stress DOCSIS platform
• Node Splits:
 • Add transceivers (segmentation)
 • Add new node, minimum construction, no HHP balancing
 • Add new node, design for HHP balance and future segmentation
 • Add new node, design for peak data utilization balance and future segmentation
 • Add Remote PHY – MAC/PHY device

Implementation Challenges:
• Municipal Permitting
• Maintenance Window Availability
• Underground more expensive and disruptive than aerial

Extensive Planning and Analysis with constant adjustments is required
Implementing Machine Learning for Node Split Design

Determine the Programming Environment

Which Programming Language?
- Python
- Java
- C++
- C#
- R
- JavaScript
- Scala

Which IDE (Integrated Development Environment)?
- PyCharm
- Rstudio
- R-Brain
- Jupyter
- Spyder
- Geany
Learning Process

- **Supervised**: data is labeled, and the ML system is taught by example
 - Pictures labeled as “banana” or “hammer” for system to learn

- **Unsupervised**: data is clustered and ML environment looks for anomalies
 - Financial fraud detection from analyzing normal spending habits

Decision Tree / Classification Engine

- GBM – Gradient Boosting Machine
- Random Forests
- Logistic Regression
Network Data Extract

Node under design must be extracted from map system

Each element assigned unique ID

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Element ID</th>
<th>DS HHP</th>
<th>Leg Balancing DS</th>
<th>DS HHP Ratio %</th>
<th>Leg Balancing US</th>
<th>US HHP</th>
<th>US HHP Ratio %</th>
<th>Cascade Limit</th>
<th>Power Supply Proximit</th>
<th>Voltage</th>
<th>Current</th>
<th>Proper Signal Strength</th>
<th>Minimal Construction</th>
<th>Room at Pole or Ped?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTD-75SH AGC</td>
<td>5</td>
<td>523</td>
<td>NO</td>
<td>1</td>
<td>NO</td>
<td>0</td>
<td>0</td>
<td>YES</td>
<td>YES</td>
<td>50.56</td>
<td>1.5</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-75SH</td>
<td>6</td>
<td>140</td>
<td>NO</td>
<td>26.8%</td>
<td>NO</td>
<td>383</td>
<td>73.2%</td>
<td>YES</td>
<td>NO</td>
<td>39.53</td>
<td>10.59</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>9-TFC-4</td>
<td>133</td>
<td>133</td>
<td>NO</td>
<td>25.4%</td>
<td>NO</td>
<td>390</td>
<td>74.6%</td>
<td>YES</td>
<td>NO</td>
<td>35.58</td>
<td>9.5</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>MB-75SH FD AGC</td>
<td>10</td>
<td>35</td>
<td>NO</td>
<td>6.7%</td>
<td>NO</td>
<td>488</td>
<td>93.3%</td>
<td>YES</td>
<td>NO</td>
<td>31.92</td>
<td>2.91</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>MB-75SH FD</td>
<td>11</td>
<td>19</td>
<td>NO</td>
<td>3.6%</td>
<td>NO</td>
<td>504</td>
<td>96.4%</td>
<td>NO</td>
<td>NO</td>
<td>30.37</td>
<td>1.43</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-755SH AGC</td>
<td>7</td>
<td>18</td>
<td>NO</td>
<td>3.4%</td>
<td>NO</td>
<td>505</td>
<td>96.6%</td>
<td>NO</td>
<td>NO</td>
<td>32.77</td>
<td>2.45</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>MB-755SH FD</td>
<td>8</td>
<td>8</td>
<td>NO</td>
<td>1.5%</td>
<td>NO</td>
<td>515</td>
<td>98.5%</td>
<td>NO</td>
<td>NO</td>
<td>31.35</td>
<td>1.43</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>MB-75SH FD</td>
<td>9</td>
<td>79</td>
<td>NO</td>
<td>15.1%</td>
<td>NO</td>
<td>444</td>
<td>84.9%</td>
<td>YES</td>
<td>NO</td>
<td>30.24</td>
<td>4.39</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-75SH</td>
<td>68</td>
<td>47</td>
<td>NO</td>
<td>9.0%</td>
<td>NO</td>
<td>476</td>
<td>89.5%</td>
<td>NO</td>
<td>NO</td>
<td>28.89</td>
<td>0.99</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-75SH</td>
<td>70</td>
<td>15</td>
<td>NO</td>
<td>2.9%</td>
<td>NO</td>
<td>508</td>
<td>95.5%</td>
<td>NO</td>
<td>NO</td>
<td>26.83</td>
<td>0.99</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-75SH</td>
<td>69</td>
<td>16</td>
<td>NO</td>
<td>3.1%</td>
<td>NO</td>
<td>507</td>
<td>95.3%</td>
<td>NO</td>
<td>NO</td>
<td>27.32</td>
<td>0.99</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-75SH</td>
<td>12</td>
<td>121</td>
<td>NO</td>
<td>23.1%</td>
<td>NO</td>
<td>401</td>
<td>75.4%</td>
<td>NO</td>
<td>YES</td>
<td>46.52</td>
<td>4.89</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-75SH AGC</td>
<td>13</td>
<td>109</td>
<td>NO</td>
<td>20.8%</td>
<td>NO</td>
<td>414</td>
<td>79.2%</td>
<td>NO</td>
<td>NO</td>
<td>41.15</td>
<td>4.15</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>MB-75SH FD</td>
<td>16</td>
<td>53</td>
<td>NO</td>
<td>10.1%</td>
<td>NO</td>
<td>470</td>
<td>89.9%</td>
<td>NO</td>
<td>NO</td>
<td>37.95</td>
<td>1.25</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BLE-755SH</td>
<td>15</td>
<td>10</td>
<td>NO</td>
<td>1.9%</td>
<td>NO</td>
<td>513</td>
<td>98.1%</td>
<td>NO</td>
<td>NO</td>
<td>38.37</td>
<td>0.86</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>MB-755SH FD</td>
<td>14</td>
<td>34</td>
<td>NO</td>
<td>6.5%</td>
<td>NO</td>
<td>489</td>
<td>93.5%</td>
<td>NO</td>
<td>NO</td>
<td>39.72</td>
<td>1.2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>BTD-75SH AGC</td>
<td>21</td>
<td>203</td>
<td>YES</td>
<td>38.8%</td>
<td>YES</td>
<td>320</td>
<td>61.2%</td>
<td>YES</td>
<td>YES</td>
<td>51.75</td>
<td>4.59</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Business Rule Development

• Can the Node be segmented?
• Is the proposed location geographically centered in the node polygon?
• Are Homes Passed Balanced?
• Is cascade limit exceeded?
• Is there space on the pole or in the ped for the Node?
• Does RF signal meet specifications?
• Does node activity meet minimal construction parameters if desired?
• Is any coax reversing required?
• Is fiber splice location reachable?
Machine Learning Node Split Example

Machine Learning Network Element Relational Schematic
Proposed Location — minimum construction, no HHP balancing chosen

<table>
<thead>
<tr>
<th></th>
<th>HHP</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Node</td>
<td>457</td>
<td>100%</td>
</tr>
<tr>
<td>Original Node after split</td>
<td>329</td>
<td>72%</td>
</tr>
<tr>
<td>New Node after split</td>
<td>128</td>
<td>28%</td>
</tr>
</tbody>
</table>
ML-designed Node Split with balanced HHP

Designer time saved: 30 minutes per node split!

<table>
<thead>
<tr>
<th></th>
<th>Original Node Leg A</th>
<th>Original Node Leg B</th>
<th>New Node Leg A</th>
<th>New Node Leg B</th>
<th>Coax Reversing?</th>
<th>Fiber Extension Footage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced HHP</td>
<td>111</td>
<td>136</td>
<td>178</td>
<td>98</td>
<td>Yes</td>
<td>2284</td>
</tr>
<tr>
<td>HHIP % / leg</td>
<td>21%</td>
<td>26%</td>
<td>34%</td>
<td>19%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible inputs for ML analysis, design, and what-if analysis

Creating a Holistic Network Capacity Augmentation Environment
Thank You!

Keith R. Hayes
Chief Executive Officer
IMMCO, Inc.
770-378-3595 keith.hayes@immcoinc.com