Errata Notice on Schema Locations
(May 04, 2021)

This standard makes use of namespace locations with a form of http://www.scte.org/schemas/xyz/*, where “xyz” is the location of the specific schema being referenced. Due to limitations on the current SCTE•ISBE website, those specific locations are not available.

To find such schemas:

1. Go to the standards download page at https://www.scte.org/download-scteisbe-standards/
2. Search for the standard number (xyz in the above example)
3. Expand the listing by clicking the plus (+) button to the left of the standard number

The expanded list will show the desired schema.

This notice will be removed once the exact namespace values are functional.
NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require the use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.
# Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTICE</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1.1. Executive Summary</td>
<td>6</td>
</tr>
<tr>
<td>1.2. Scope</td>
<td>6</td>
</tr>
<tr>
<td>1.3. Benefits</td>
<td>6</td>
</tr>
<tr>
<td>1.4. Intended Audience</td>
<td>6</td>
</tr>
<tr>
<td>1.5. Areas for Further Investigation or to be Added in Future Versions</td>
<td>7</td>
</tr>
<tr>
<td>2. Normative References</td>
<td>7</td>
</tr>
<tr>
<td>2.1. SCTE References</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Standards from Other Organizations</td>
<td>7</td>
</tr>
<tr>
<td>2.3. Published Materials</td>
<td>8</td>
</tr>
<tr>
<td>3. Informative References</td>
<td>8</td>
</tr>
<tr>
<td>3.1. SCTE References</td>
<td>8</td>
</tr>
<tr>
<td>3.2. Standards from Other Organizations</td>
<td>8</td>
</tr>
<tr>
<td>3.3. Published Materials</td>
<td>8</td>
</tr>
<tr>
<td>4. Compliance Notation</td>
<td>9</td>
</tr>
<tr>
<td>5. Abbreviations and Definitions</td>
<td>9</td>
</tr>
<tr>
<td>5.1. Abbreviations</td>
<td>9</td>
</tr>
<tr>
<td>5.2. Definitions</td>
<td>10</td>
</tr>
<tr>
<td>5.3. Style Conventions</td>
<td>10</td>
</tr>
<tr>
<td>6. Overview (Informative)</td>
<td>11</td>
</tr>
<tr>
<td>7. XML Practices</td>
<td>11</td>
</tr>
<tr>
<td>7.1. Document Order</td>
<td>12</td>
</tr>
<tr>
<td>7.2. Representation of time</td>
<td>12</td>
</tr>
<tr>
<td>7.3. Use of identifiers and references</td>
<td>12</td>
</tr>
<tr>
<td>7.4. Use of namespaces</td>
<td>12</td>
</tr>
<tr>
<td>7.5. Use of XLink</td>
<td>13</td>
</tr>
<tr>
<td>8. Data Model (Normative)</td>
<td>13</td>
</tr>
<tr>
<td>8.1. IdentifiableType</td>
<td>14</td>
</tr>
<tr>
<td>8.1.1. AltID</td>
<td>15</td>
</tr>
<tr>
<td>8.1.2. Metadata</td>
<td>15</td>
</tr>
<tr>
<td>8.2. ReusableType</td>
<td>16</td>
</tr>
<tr>
<td>8.3. Media</td>
<td>17</td>
</tr>
<tr>
<td>8.4. MediaPoint</td>
<td>19</td>
</tr>
<tr>
<td>8.4.1. MatchSignal</td>
<td>24</td>
</tr>
<tr>
<td>8.4.2. Remove</td>
<td>26</td>
</tr>
<tr>
<td>8.4.3. Apply</td>
<td>26</td>
</tr>
<tr>
<td>8.5. Policy</td>
<td>27</td>
</tr>
<tr>
<td>8.6. ViewingPolicy</td>
<td>28</td>
</tr>
<tr>
<td>8.7. Audience</td>
<td>29</td>
</tr>
<tr>
<td>8.8. Results</td>
<td>29</td>
</tr>
<tr>
<td>8.9. Audit</td>
<td>30</td>
</tr>
<tr>
<td>9. Service interface definition</td>
<td>32</td>
</tr>
</tbody>
</table>
9.1. Broken References ___________________________________________ 33
9.2. Authentication and Authorization ________________________________ 34
  9.2.1. AWS Signature Version 4 ______________________________ 34
  9.2.2. OAuth 2.0 __________________________________________ 35
9.3. Common Interface ___________________________________________ 35
  9.3.1. GET ______________________________________________ 35
  9.3.2. PUT _______________________________________________ 35
  9.3.3. DELETE ___________________________________________ 36
  9.3.4. POST ______________________________________________ 36
9.4. GET Queries ________________________________________________ 36
9.5. GET Decision Request Queries _________________________________ 37
9.6. Managing Foreign Reference Updates ____________________________ 38
10. Policy Lifecycle and precedence ______________________________________ 38
  10.1. Audience Membership ________________________________________ 39
  10.2. Policy Lifecycle ______________________________________________ 39
  10.3. Precedence and Stacking ______________________________________ 40
Appendix A: Use cases and Examples __________________________ 42
Appendix B: Request signing _________________________________________ 49
Appendix C: User's Guide Recommendations _____________________________ 56
  C.1 Audience Messages ___________________________________________ 56
    C.1.1 Identifiers ______________________________________________ 56
    C.4.1 Metadata ______________________________________________ 56
    C.1.2 Audience Types _________________________________________ 56
    C.1.3 Audience Uses _________________________________________ 56
  C.2 ViewingPolicy Messages _________________________________________ 56
    C.2.1 Identifiers ______________________________________________ 56
    C.4.1 Metadata ______________________________________________ 56
    C.2.2 ViewingPolicy Action Types ________________________________ 57
  C.3. Policy Messages ______________________________________________ 57
    C.3.1 Identifiers ______________________________________________ 57
    C.4.1 Metadata ______________________________________________ 57
    C.3.1 Priority _______________________________________________ 57
  C.4 Media and MediaPoint Messages ____________________________________ 57
    C.4.1 MediaPoint Types _________________________________________ 57
    C.4.2 Identifiers ______________________________________________ 57
    C.4.2 AltIDs ____________________________________________ 57
    C.4.1 Metadata ______________________________________________ 58
    C.4.3 MatchSignal ____________________________________________ 58
  C.5 Message Delivery ______________________________________________ 58
    C.5.1 Message Timing _________________________________________ 58
    C.5.2 Media Size ____________________________________________ 58
    C.5.3 Signing Requirements ______________________________________ 58
List of Figures

<table>
<thead>
<tr>
<th>Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1 - CONCEPTUAL CABLE ALTERNATE CONTENT ECOSYSTEM (NON-NORMATIVE)</td>
<td>11</td>
</tr>
<tr>
<td>FIGURE 2 - DATA MODEL UML CLASS DIAGRAM</td>
<td>13</td>
</tr>
<tr>
<td>FIGURE 3 - POLICY STACKING USE-CASE</td>
<td>21</td>
</tr>
<tr>
<td>FIGURE 4 - POLICY PRECEDENCE AND STACKING</td>
<td>40</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1 - ALTERNATE CONTENT ELEMENT DESCRIPTIONS</td>
<td>11</td>
</tr>
<tr>
<td>TABLE 2 - NAMESPACES</td>
<td>12</td>
</tr>
<tr>
<td>TABLE 3 - SEMANTICS OF THE IDENTIFIABLETYPE COMPLEX TYPE</td>
<td>14</td>
</tr>
<tr>
<td>TABLE 4 - SEMANTICS OF THE ALTID ELEMENT</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 5 - SEMANTICS OF THE METADATA ELEMENT</td>
<td>15</td>
</tr>
<tr>
<td>TABLE 6 - REUSABLE MODES</td>
<td>16</td>
</tr>
<tr>
<td>TABLE 7 - SEMANTICS OF THE REUSABLETYPE COMPLEX TYPE</td>
<td>17</td>
</tr>
<tr>
<td>TABLE 8 - SEMANTICS OF THE MEDIA ELEMENT</td>
<td>18</td>
</tr>
<tr>
<td>TABLE 9 - SEMANTICS OF THE MEDIAPoint ELEMENT</td>
<td>22</td>
</tr>
<tr>
<td>TABLE 10 - SEMANTICS OF THE MATCHSIGNAL ELEMENT</td>
<td>24</td>
</tr>
<tr>
<td>TABLE 11 - SEMANTICS OF THE REMOVE ELEMENT</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 12 - SEMANTICS OF THE APPLY ELEMENT</td>
<td>27</td>
</tr>
<tr>
<td>TABLE 13 - SEMANTICS OF THE POLICY ELEMENT</td>
<td>27</td>
</tr>
<tr>
<td>TABLE 14 - SEMANTICS OF THE VIEWINGPOLICY ELEMENT</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 15 - SEMANTICS FOR THE AUDIENCETYPE COMPLEX TYPE</td>
<td>29</td>
</tr>
<tr>
<td>TABLE 16 - SEMANTICS FOR THE RESULTS ELEMENT</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 17 - SEMANTICS FOR THE AUDITTYPE COMPLEX TYPE</td>
<td>31</td>
</tr>
<tr>
<td>TABLE 18 - SERVICE QUERY PARAMETERS</td>
<td>37</td>
</tr>
<tr>
<td>TABLE 19 – DECISION REQUEST QUERY PARAMETERS</td>
<td>38</td>
</tr>
</tbody>
</table>
Introduction

1.1. Executive Summary
Video distribution is transitioning from Quadrature Amplitude Modulation (QAM) to delivery over Internet Protocol (IP) networks. These IP networks are delivering video content to subscribers via many distribution paths to many IP-connected devices, including mobile phones, tablets and game consoles for video content of all forms, including Video on Demand (VOD) and linear, live content.

Many QAM systems were developed to enable programmers to inform and affect the content delivery to subscribers. For example, during a regional sports blackout, a video provider may use an Integrated Receiver and Decoder (IRD) to provide alternate content to a unique geographic area serving a set of subscribers.

As distributors migrate to IP-delivered content, systems must be created to replicate the traditional functional systems in order to create a contiguous service capability between QAM and IP video delivery. Additionally, providers are also delivering single mezzanine quality feeds to the distributor. This requires the distributor to also replicate the functionality on the traditional delivery system.

1.2. Scope
This document defines the Event Scheduling and Notification Interface (ESNI), which is a web interface facilitating the transmission of event and policy information. ESNI provides a functional method for providers to communicate upcoming schedule or signal-based events and corresponding policy to distributors. This interface allows existing content distribution controls traditionally performed via manual control in IRD’s by providers to be replaced with a programmatic interface (this standard). ESNI policy enables control of content distributed to audiences based on attributes of that audience including (but not limited to) geographic location and device type.

1.3. Benefits
ESNI can be used to communicate details regarding regional blackout/alternate content selection, market protection, or other content restrictions as they may relate to a defined audience. This method can also inform the distributor of other events such as advertising breaks and availability for digital ad insertion, network PVR record times and restrictions, or program information (i.e. improve accuracy of electronic program guide). SCTE 268 (Operational Practice of SCTE 224 for Advertising Information) expands upon the use of SCTE 224 to enable addressable and enhanced advertising. Additionally, ESNI supports an audit method that allows the provider to query the status of policy execution and verify the execution result.

1.4. Intended Audience
Content Providers, Multi-Channel Video Program Distributors, TV Everywhere Providers/Distributors.

This standard uses Extensible Markup Language (XML) extensively. A markup language defines a set of rules for encoding documents in a format that is both human-readable and machine-
1.5. Areas for Further Investigation or to be Added in Future Versions

There are two areas for further investigation and potential future versions. One area would be providing the ability to verify the audiences accessible on the distributor execution platform. Another would be further definition, enhancement, and standardization of the metadata fields in this standard.

2. Normative References

The following documents contain provisions, which, through reference in this text, constitute provisions of this document. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to revision; and while parties to any agreement based on this document are encouraged to investigate the possibility of applying the most recent editions of the documents listed below, they are reminded that newer editions of those documents might not be compatible with the referenced version.

2.1. SCTE References

- ANSI/SCTE 236 2017, Content Metadata.

2.2. Standards from Other Organizations

- ISO 8601:2004, Data elements and interchange formats -- Information interchange -- Representation of dates and times (Coordinated Universal Time).
- IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. March 1997.

2.3. Published Materials

- No normative references are applicable.

3. Informative References

The following documents might provide valuable information to the reader but are not required when complying with this document.

3.1. SCTE References

- ANSI/SCTE 250 Real-time Event Signaling and Management API
- SCTE 268 Operational Practice of SCTE 224 for Advertising Information

3.2. Standards from Other Organizations

- Real-time Event Signaling and Management OC-SP-ESAM-API-C01-161021, 10/21/2016, Cable Television Laboratories, Inc.
- A/335 “Video Watermark Emission” with Amendment 1: https://www.atsc.org
- Entertainment ID Registry Association (EIDR) – http://eidr.org

3.3. Published Materials

- No informative references are applicable.
4. Compliance Notation

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>shall</td>
<td>This word or the adjective “required” means that the item is an absolute requirement of this document.</td>
</tr>
<tr>
<td>shall not</td>
<td>This phrase means that the item is an absolute prohibition of this document.</td>
</tr>
<tr>
<td>forbidden</td>
<td>This word means the value specified shall never be used.</td>
</tr>
<tr>
<td>should</td>
<td>This word or the adjective “recommended” means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighted before choosing a different course.</td>
</tr>
<tr>
<td>should not</td>
<td>This phrase means that there may exist valid reasons in particular circumstances when the listed behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.</td>
</tr>
<tr>
<td>may</td>
<td>This word or the adjective “optional” means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.</td>
</tr>
<tr>
<td>deprecated</td>
<td>Use is permissible for legacy purposes only. Deprecated features may be removed from future versions of this document. Implementations should avoid use of deprecated features.</td>
</tr>
</tbody>
</table>

5. Abbreviations and Definitions

5.1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad-ID</td>
<td>Advertisement Identifier Registry</td>
</tr>
<tr>
<td>EIDR</td>
<td>Entertainment Identifier Registry</td>
</tr>
<tr>
<td>ESAM</td>
<td>Event Signaling and Management</td>
</tr>
<tr>
<td>ESNI</td>
<td>Event Scheduling and Notification Interface</td>
</tr>
<tr>
<td>HMAC-SHA256</td>
<td>Hashed Message Authentication Code with Secure Hash Algorithm, 256 bits</td>
</tr>
<tr>
<td>HREF</td>
<td>Hypertext REFerence</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer (or Transport) Protocol</td>
</tr>
<tr>
<td>IRD</td>
<td>integrated receiver/decoder</td>
</tr>
<tr>
<td>MVPD</td>
<td>multichannel video programming distributor</td>
</tr>
<tr>
<td>NPT</td>
<td>normal play time</td>
</tr>
<tr>
<td>QAM</td>
<td>quadrature amplitude modulation</td>
</tr>
<tr>
<td>TZD</td>
<td>time zone designator</td>
</tr>
<tr>
<td>URI</td>
<td>Uniform Resource Identifier</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>URN</td>
<td>Uniform Resource Number</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time (or Universal Time Coordinated)</td>
</tr>
<tr>
<td>VIRD</td>
<td>virtual IRD</td>
</tr>
<tr>
<td>VOD</td>
<td>video on demand</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
</tbody>
</table>
### 5.2. Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESNI Event</td>
<td>Point of interest relative to the timeline of a media presentation. In this standard, it is represented by an in-band signal, wall clock time, or offset from the start of the media.</td>
</tr>
<tr>
<td>Event Scheduling and Notification Service</td>
<td>Receives ESNI event and policy information and provides feedback on the application of the events and policies.</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Also referred to as the Alternate Content Scheduling System, it maintains the metadata associated with alternate content events, such as program information, duration, and affected geo-location.</td>
</tr>
<tr>
<td>Virtual IRD</td>
<td>A logical grouping of subscribers loosely associated with their geographic location and conceptually similar to an IRD coverage area.</td>
</tr>
<tr>
<td>eXtensible Markup Language (XML)</td>
<td>A markup language defines a set of rules for encoding documents in a format that is both human-readable and machine-readable. The reader is referred to the normative XML references for additional background and definitions.</td>
</tr>
</tbody>
</table>

### 5.3. Style Conventions

The following conventions are used within this document.

- XML Elements names are capitalized and are represented in the document in bold, fixed-width font as in `Element`. When expressing an element hierarchy, a forward slash is used as in `Element1/Element2`. Element names comprised of multiple words are expressed using upper-camel-case as in `ThisElement`. Element cardinality is expressed in this document as `<minOccurs>…<maxOccurs>`, where the values are the minimum and maximum occurrences of the element respectively.

- XML Attribute names are preceded by an ‘@’ character, begin with a lower-case letter and represented in the document as a fixed-width font as in `@attribute`. When expressing an attribute as a child of a specific element, a forward slash is used as in `Element/@attribute`. Attribute names comprised of multiple words are expressed using lower-camel-case as in `@thisAttribute`. Attributes may be characterized as mandatory (M), optional (O), optional with default value (OD) or conditionally mandatory (CM). The reader should see the Description column in the table or the section containing the table to determine the criteria associated with the CM identifier.

- XML Type names are enclosed in “<” and “>” characters and are represented in the document in bold, fixed-width font as in `<Type>`. 
6. Overview (Informative)

![Figure 1 - Conceptual Cable Alternate Content Ecosystem (Non-Normative)](image)

Table 1 - Alternate Content Element Descriptions

<table>
<thead>
<tr>
<th>Alternate Content Elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider ESNI</td>
<td>Provides ESNI events and policy information to distributor systems. <em>May</em> optionally provide program information. <em>May</em> also provide direct to consumer event directives.</td>
</tr>
<tr>
<td>Distributor ESNI Service</td>
<td>Receives ESNI event and policy information from a provider and makes feedback available on the application of the events and policies back to the provider. Interacts with delivery systems to detect ESNI events and apply policies.</td>
</tr>
<tr>
<td>Programming Sources</td>
<td>Video/audio sources that <em>may</em> contain SCTE 35 signals.</td>
</tr>
<tr>
<td>Transcoding/Packaging</td>
<td>Sends and receives signal data and <em>may</em> receive directives to affect the video/audio stream, if necessary, for downstream processing and/or event decision-making.</td>
</tr>
<tr>
<td>Provider Signal and Metadata Database</td>
<td>Houses signal and/or programming metadata that <em>may</em> be used by the Provider ESNI service for the purposes of policy distribution and/or event directive enforcement.</td>
</tr>
</tbody>
</table>

7. XML Practices

The ESNI data model is specified in the XML Schema, and the reader is assumed to be reasonably informed on practices associated with XML processing. Note, for the SCTE 224 schema, versions of the schema are identified by the “version” attribute of the schema in the form of “yyyymmdd”. With such general practice and understanding, throughout the document there *may* be expressly identified XML areas of practice to which attention is called to eliminate possible ambiguity or lack of clarity.
7.1. Document Order

One such topic as it relates to this standard is the preservation of strict document order throughout the processing of a XML documents. Strict document order shall be both preserved during transfer as well as during processing.

7.2. Representation of time

Unless otherwise specified, all duration and date and time values in this data model shall use the formats specified in [XMLSCHEMA2], which are closely related to [ISO8601]. The XML Schema dateTime data type allows for values to include a Time Zone Designator (TZD). If a TZD is not present, the time is assumed to be local relative to the end-user, as represented by the user-agent or device. While it may be safe to assume local time when communicating within the same time zone, it is ambiguous when used in communicating across different time zones. Time values in this data model should include a time zone designator. When a TZD is present, the time is specified as a local time followed by a numeric offset from UTC. If the time zone is UTC (i.e. an offset of zero), the special designator “Z” may be used. The following values represent the same instant in time:

- 18:30:00Z
- 18:30:00+00:00
- 22:30:00+04:00
- 11:30:00−07:00

The XML Schema duration data type is the appropriate format for carrying a time period.

7.3. Use of identifiers and references

All elements defined in this specification shall be identified by a Uniform Resource Identifier (URI) using the @id attribute. The @id shall be expressed in a relative form and shall not be combined with an @xml:base and shall be relative to the defined service. The @id values are not meant to imply any mandatory convention outside of the basic URI format and may be defined by the provider. Reusable elements defined in this standard shall be locatable by their @id attribute and therefore their @id attributes shall result in a URL relative to the service base.

7.4. Use of namespaces

All documents based on this standard shall declare the following namespaces as part of the document element or use fully qualified namespaces.

<table>
<thead>
<tr>
<th>Recommended Prefix</th>
<th>Namespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;default&gt;</td>
<td><a href="http://www.scte.org/schemas/224">http://www.scte.org/schemas/224</a></td>
</tr>
<tr>
<td>xlink</td>
<td><a href="http://www.w3.org/1999/xlink">http://www.w3.org/1999/xlink</a></td>
</tr>
<tr>
<td>action</td>
<td>urn:scte:224:action</td>
</tr>
<tr>
<td>audience</td>
<td>urn:scte:224:audience</td>
</tr>
</tbody>
</table>

Example Media element with namespace declarations:

```xml
<Media xmlns="http://www.scte.org/schemas/224" xmlns:xlink="http://www.w3.org/1999/xlink"
   id="/media/1" description="TRU" lastUpdated="2018-02-03T19:31:32.3280038Z">
  <MediaPoint id="/mp1" description="Start of Program 1">
```
7.5. Use of XLink

Elements of type `<ReusableType>` or `<AuditType>`, and their derivatives, allow the use of XLink to reference existing resources. These XLink references shall be type "simple" as defined in the XLink Recommendation.

8. Data Model (Normative)

A provider manages the ESNI data using the interface defined in Section 9 on a distributor’s Event Scheduling and Notification Interface set of services. The provider manages data model entities for **Media**, **Policy**, **ViewingPolicy**, and **Audience** and associated dependent elements of which an overview is shown in Figure 2.

The data model also supports an Audit element, which can be accessed by the provider on the distributor’s Event Scheduling and Notification Interface service to audit the application of ESNI data.

![Figure 2 - Data Model UML Class Diagram](image-url)
8.1. IdentifiableType

IdentifiableType is an abstract base type, which includes basic attributes for identification, description, and versioning, as well as a collection of alternative ID values to support correlation with other identification schemes and an Ext element for general extensibility.

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>M</td>
<td>A Uniform Resource Identifier (URI). This value shall directly identify the resource that it represents and may also locate the identified resource, however, it shall not be presumed to do so unless provided as a URL per 7.3. (See Table 7 for more information on the use of this attribute.)</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>A common description used for the resource. See the derived types for guidance on how to use this attribute. This value is not required to be unique and shall not be used to definitively identify the content. The language of this attribute content shall be consistent throughout the document. Additional language descriptions may be provided through the Metadata element.</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>M</td>
<td>The date and time when the resource was last modified. Primary versioning is only mutable by the provider. (See Table 7 for more information on the use of this attribute.)</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Explicitly provides the base URI for the purpose of resolving the relative URIs contained in @xlink:href attributes. See 7.3 for more details.</td>
</tr>
<tr>
<td>AltID</td>
<td>0..N</td>
<td>May be used to express additional identifiers (e.g. EIDR for entertainment or Ad-ID for advertisements) that identify the associated content. Alternative identification may be used for house identifiers or identification that does not possess a global namespace or uniqueness. The values used in this element are contextual to its parent element.</td>
</tr>
<tr>
<td>Metadata</td>
<td>0..1</td>
<td>Allows for descriptive metadata associated with this resource. Important to note that it allows for any metadata from any namespace and does not prescribe a specific metadata format nor validate the structure of that metadata.</td>
</tr>
<tr>
<td>Ext</td>
<td>0..1</td>
<td>This element is provided for extensibility. It may be used to contain any attribute or element from any other namespace.</td>
</tr>
</tbody>
</table>

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded
8.1.1. AltID

The Alternate Identifier may be used to express additional identifiers (e.g. EIDR, Ad-ID, etc.) that identify the associated content. Alternative identification may be used for house identifiers or identification that does not possess a global namespace or uniqueness. The values used in this element are contextual to its parent element. Details of a provider’s implementation of the AltID element should be described in the provider’s User’s Guide (see Appendix C).

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@description</td>
<td>O</td>
<td>A freetext description or label for the alternate identifier being provided.</td>
</tr>
<tr>
<td>@type</td>
<td>O</td>
<td>Use the values below exactly as shown when appropriate.</td>
</tr>
</tbody>
</table>

- CallSign
- EIDR
- Ad-ID
- private:* (where asterisk is a wild card for any set of characters)

Example AltID element of a Media, with “description” attribute.

```xml
<MediaPoint id="media/tbs" description="Some Program" lastUpdated="2017-08-09T14:58:21.7767975Z">
  <AltID description="Series Id" type="private:Gracenote">Tribune/EP002741720000</AltID>
  <AltID description="Episode Id" type="private:Gracenote">Tribune/EP002741720023</AltID>
</MediaPoint>
```

Example AltID element of a Media, with “type” attribute for an EIDR video stream ID.

```xml
<MediaPoint id="media/tbs" description="Some Program" lastUpdated="2017-08-09T14:58:21.7767975Z">
  <AltID type="EIDR">10.5239/6BCD-37E0</AltID>
</MediaPoint>
```

Example AltID element of a Media, with “type” attribute.

```xml
<MediaPoint id="media/tbs" description="Some Program" lastUpdated="2017-08-09T14:58:21.7767975Z">
  <AltID type="Ad-ID">CNPA0484000H</AltID>
</MediaPoint>
```

8.1.2. Metadata

Metadata allows for descriptive metadata associated with a resource. Metadata allows for any metadata in any format ranging from the standard urn:scte:224:metadata, or SCTE 236, or a proprietary namespace. The values used in this element are contextual to its parent element. Details of a provider’s implementation of the Metadata element should be described in the provider’s User’s Guide (see Appendix C).

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>0..N</td>
<td>An element provided using either the standard urn:scte:224:metadata namespace or a proprietary namespace and expressing a property of the containing resource. Common metadata properties are defined by SCTE external to this specification.</td>
</tr>
</tbody>
</table>
8.2. ReusableType

ReusableType is an abstract base type extended from IdentifiableType. ReusableType adds an optional attribute @xlink:href to be used when the element is provided as a reference to a resource of the same type.

ReusableType elements can be expressed in two modes: Globally Reusable or Reference. Globally Reusable elements have a unique identifier, provided in the @id attribute, and are intended to be referenced and reused from other elements, but managed separately. Reference elements occur within another identifiable element and include an @xlink:href attribute, which identifies a globally reusable element.

This approach allows a flexible application of reuse modes for Media, Policy, ViewingPolicy and Audience elements to support efficient and concise data model maintenance.

<table>
<thead>
<tr>
<th>Table 6 - Reusable Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child of IdentifiableType</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Globally Reusable</td>
</tr>
<tr>
<td>Reference</td>
</tr>
</tbody>
</table>
### Table 7 - Semantics of the ReusableType Complex Type

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>CM</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This attribute <strong>shall</strong> be provided unless xlink:href is present.</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>CM</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This value is mandatory if the @id attribute is also provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the element contains an external resource that has been updated, the provider <strong>shall</strong> update this value.</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@xlink:href</td>
<td>CM</td>
<td>Presence of this attribute indicates that this element is a reference to an existing resource. The resource is both identifiable and locatable using the URL provided in this attribute. The presence of this attribute explicitly indicates a reference to a globally defined element. Therefore, it <strong>shall not</strong> be present along with the @id attribute and further, any other attribute that is expressed <strong>shall</strong> be ignored as it may conflict with the identified referenced element.</td>
</tr>
<tr>
<td>AltID</td>
<td>0..N</td>
<td>Inherited from IdentifiableType (See 8.1.1)</td>
</tr>
<tr>
<td>Metadata</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1.2)</td>
</tr>
<tr>
<td>Ext</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
</tbody>
</table>

Conventions used in the tables:
- For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
- For elements: `<minOccurs>..<maxOccurs>`, where N=unbounded

### 8.3. Media

The term, Media, is purposely broad and is applicable to all forms of on-demand, time-shifted and linear content, as well as other forms of media not explicitly mentioned here. Media is instantiated as a global `Media` element, which contains a collection of `MediaPoint` elements. When a Media element is used to represent a linear source, it should represent the network over a defined time period (e.g. one or more days) and not an individual program.

A Media element may be associated with one or more sources of content that comprise a branded presentation experience. The source identifier is important for matching signals (time or in-band), which may trigger the application (or removal) of a given Policy. In the case where a subscriber presentation is drawn from multiple sources, the definition of the set of sources comprising a given subscriber experience is out of scope of this standard. For a linear service, one AltID should be an EIDR Video Service ID.

The primary identification mechanism of the Media element is the @id attribute. The Media element may carry or provide alternative identifiers by means of the contained child AltID element. The @description attribute provides expanded descriptive text. The Metadata child element may be used for carrying more complex descriptive metadata data structures, potentially from other namespaces.
The main purpose of the **Media** element is to provide contextual encapsulation for **MediaPoint** elements, which are defined in section 8.4.

### Table 8 - Semantics of the Media element

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>CM</td>
<td>Inherited from <em>ReusableType</em> (See 8.2) This value <em>may</em> directly identify the content feed that it represents, but it <em>shall not</em> be presumed to do so. If this value does not directly identify the associated content feed then at least one <strong>AltID</strong> <em>shall</em> be provided that does identify the content, network or asset.</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from <em>IdentifiableType</em> (See 8.1) A common description used for the Media, which <em>may</em> be a call-sign commonly used for a linear network such as “ESPN” or an asset title such as “Titanic”.</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>CM</td>
<td>Inherited from <em>ReusableType</em> (See 8.2)</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Inherited from <em>IdentifiableType</em> (See 8.1)</td>
</tr>
<tr>
<td>@xlink:href</td>
<td>CM</td>
<td>Inherited from <em>ReusableType</em> (See 8.2)</td>
</tr>
<tr>
<td>@effective</td>
<td>O</td>
<td>The date and time when any contained child <strong>MediaPoint</strong> element first becomes eligible for consideration. This value <em>shall not</em> be greater than the start of any explicit <strong>MediaPoint/@effective</strong> attribute value.</td>
</tr>
<tr>
<td>@expires</td>
<td>O</td>
<td>The date and time when any contained child <strong>MediaPoint</strong> element is no longer eligible for consideration. This value <em>shall not</em> be less than any explicit <strong>MediaPoint/@expires</strong> attribute value.</td>
</tr>
<tr>
<td>@source</td>
<td>O</td>
<td>This value <em>may</em> be used to explicitly identify the default URI of the content associated with this <strong>Media</strong> element. Providing a default @source attribute would be helpful if this <strong>Media</strong> element is used to reference multiple content sources.</td>
</tr>
<tr>
<td>AltID</td>
<td>0..N</td>
<td>Inherited from <em>IdentifiableType</em> (See 8.1.1)</td>
</tr>
<tr>
<td>Element or Attribute Name</td>
<td>Use</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>Metadata</strong></td>
<td>0..1</td>
<td>Inherited from <em>IdentifiableType</em> (See 8.1.2) May be used here to include metadata describing the linear feed or asset. It is intended to be a contextual placeholder for use should a sender of the data wish to associate metadata with a given identifiable object. Any identifiers carried in the metadata, or what the metadata data model used are outside the scope of this standard.</td>
</tr>
<tr>
<td><strong>Ext</strong></td>
<td>0..1</td>
<td>Inherited from <em>IdentifiableType</em> (See 8.1)</td>
</tr>
<tr>
<td><strong>MediaPoint</strong></td>
<td>0..N</td>
<td>A sequence of <em>MediaPoint</em> elements. See 8.4 for semantics. An empty set of MediaPoints indicates that there are no applicable MediaPoints for the time range defined by @effective and @expires. The <em>MediaPoint</em> elements are expressed in the order in which they should be considered within the <em>Media</em> element. Therefore, the order of <em>MediaPoint</em> elements <em>shall</em> be preserved.</td>
</tr>
</tbody>
</table>

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: `<minOccurs>..<maxOccurs>`, where N=unbounded

Example **Media** (namespace declarations omitted for readability):
```
<Media id="/media/tbs" description="TBS" lastUpdated="2018-02-10T12:00:00+00:00">
  <!-- Network / Super -->
  <MediaPoint id="/network/1" description="TBS">
    <AltID>http://dx.doi.org/10.5239/C370-DCA5</AltID>
    <Apply>
      <Policy xlink:href="/policy/6"/>
    </Apply>
  </MediaPoint>
  <!-- Program Begins -->
  <MediaPoint id="/program/20997C44" matchTime="2014-11-05T12:00:00Z" >
    <AltID>http://dx.doi.org/10.5240/9EF1-2DA2-5C1F-98B4-F784-E</AltID>
    <Apply duration="PT2H">
      <Policy xlink:href="/policy/5"/>
    </Apply>
    <MatchSignal match="ALL">
      <Assert>/SpliceNull</Assert>
      <Assert>//SegmentationUpid[@segmentationTypeId='8']="20997C44"</Assert>
    </MatchSignal>
  </MediaPoint>
</Media>
```

### 8.4. MediaPoint

A MediaPoint is a temporal point of interest within the context of a Media. A MediaPoint is used to represent some change in state or to signal an expected event, or unexpected events such as program over/under-runs. MediaPoints are associated with specific locations in the content using either timestamps or embedded signals.

The evaluation of a MediaPoint is bounded by the MediaPoint’s @effective and @expires window. By default, a MediaPoint is only evaluated once, meaning that once a MediaPoint @matchTime or MatchSignal criteria is met, the MediaPoint is no longer evaluated. If a MediaPoint *shall* be evaluated multiple times, the @reusable attribute should be set to “true”.

---

**ANSI/SCTE 224 2021**

**AMERICAN NATIONAL STANDARD © SCTE**
It is recommended the `@reusable` attribute typically be set to true. If `@reusable` is true, a MediaPoint shall be evaluated each time it is triggered throughout its `@effective` and `@expires` window. A MediaPoint is also only evaluated once if the `@reusable` attribute is present and set to “false”.

MediaPoints are primarily used to trigger changes in Policy (See 8.5), but may be used to provide additional metadata such as alternative identifiers (AltID), descriptive text (`@description`) or metadata structures from other namespaces, using the `Metadata` element.

Policy applied by a MediaPoint without a `@matchTime`, `@matchOffset` or `MatchSignal` is herein referred to as “resident” (i.e. the Policy within the bounds of the Media is always to be considered/evaluated). Resident Policy is subject to the constraints of `@effective` and `@expires` attributes. A resident Policy shall always be provided to explicitly define the default behavior. If a Policy, resident or otherwise, is not explicitly defined then there shall be no implied action and no implied restriction. In other words, the distributor shall be permitted to provide content to any audience in the world, using any device.

The following three cases define how `@matchTime` shall be evaluated.

1) If a `MediaPoint` element includes a `@matchTime` attribute and there are no `MatchSignal` elements the Policy shall be applied.

2) If a `MediaPoint` element includes both a `@matchTime` attribute and `MatchSignal` element(s), the `@matchTime` shall be treated as an expected time and the policy shall not be applied at the `@matchTime`.

   Note: This is a change from 2018 and previous versions of SCTE 224, where “if a MediaPoint element includes both a `@matchTime` attribute and `MatchSignal` element, the first criteria to be met shall be applied.” This revision treats `@matchTime` as a non-actionable element when `MatchSignal` is present, thus allowing expected time to be conveyed in the MediaPoint.

3) When there is a `MatchSignal` and a `@signalTolerance` present in the `MediaPoint`, if the time in the `@matchTime` attribute, adjusted by `@signalTolerance` attribute, is reached in the absence of a signal matching the `MatchSignal` element, the Policy shall be applied.

If a signal does arrive after the time is reached, it may apply to another MediaPoint (i.e., arrival is within another MediaPoint’s `@effective` and `@expires` window.

If a signal matching the `MatchSignal` element is received prior to reaching the time in the `@matchTime` attribute, potentially adjusted by `@signalTolerance`, the Policy shall be applied.

A MediaPoint provides the means to match a temporal location either via a signal or wall clock time. If by a signal, the source of content identified by the `@source` (or by the `Media` element) shall be used to perform the match.

A MediaPoint shall be associated to a single content source identified by the `@source` attribute. If the `@source` attribute has been omitted, the source is assumed to be identified by the `Media/@source` attribute or implied by the `Media/@id`. The value provided may be the
identifier of a source from a pool of possible sources which may be drawn upon for use in presentation to an Audience. In either case, the actual experience delivered to a given Audience is dictated by the Policies referenced in a MediaPoint. A clarifying example is provided below.

Two important observations:

1. The “Media” encapsulates Policy potentially for a branded network/channel as an Audience would see it.
2. The Policy activation as a result of a signal match or time match could be targeted to a particular source that may be part of an Audience presentation. More specifically, a MediaPoint may be tied to a single content source identified by the @source attribute for the purposes of Policy application and removal. The @source attribute on the MediaPoint takes precedence over the @source attribute on the parent Media.

The “base” or “default” source can either be an implementation specific configuration or could be a resident Policy specifying which source should be presented in the absence of any other applied Policy. Resident Policy is still considered per the precedence rules as outlined in section 9.

![Figure 3 - Policy Stacking Use-Case](image-url)
### Table 9 - Semantics of the MediaPoint element

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1) Although the @id is optional, it shall be unique within the provider’s identity, if provided.</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1) A common description, which may be used to express the name of a program, chapter or advertisement.</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1) This value, when provided, shall not be greater than the parent Media/@lastUpdated and shall correctly identify the time when the MediaPoint was last changed within the context of the parent Media element. This value may be used by the distributor to aid in updating existing Media resources by indicating which MediaPoint(s) have changed.</td>
</tr>
<tr>
<td>Element or Attribute Name</td>
<td>Use</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@effective</td>
<td>O</td>
<td>The time when this MediaPoint first becomes eligible for consideration. When omitted, the Media/@effective attribute shall be used.</td>
</tr>
<tr>
<td>@expires</td>
<td>O</td>
<td>The time when this MediaPoint is no longer eligible for consideration. When omitted, the Media/@expires shall be used.</td>
</tr>
<tr>
<td>@matchTime</td>
<td>O</td>
<td>The time at which referenced Policy(s) may be applied or removed depending on if there is a MatchSignal (possibly with a @signalTolerance) as described in the text above. @matchTime shall be within the effective window.</td>
</tr>
<tr>
<td>@matchOffset</td>
<td>O</td>
<td>When provided, represents an offset from the beginning of the VOD or time-shifted asset, expressed as duration. The definition of the beginning of an asset is outside the scope of this specification.</td>
</tr>
<tr>
<td>@source</td>
<td>O</td>
<td>Uniquely identifies which source MatchSignal should be matched against. If not present, the source shall be identified by the parent Media/@source attribute. If neither the MediaPoint nor Media have a @source attribute then this value is undefined and left to be interpreted by the implementation.</td>
</tr>
<tr>
<td>@expectedDuration</td>
<td>O</td>
<td>When provided, represents the duration of the activity described by the MediaPoint. For example, for a program start it may represent duration of program, for an ad avail, it may represent the avail duration.</td>
</tr>
<tr>
<td>@order</td>
<td>O</td>
<td>When provided, identifies the order of MediaPoints within a Media, starting with “0” as the first MediaPoint.</td>
</tr>
<tr>
<td>@reusable</td>
<td>O</td>
<td>When provided, designates a MediaPoint for multiple evaluations throughout its effectiveness window, and not just the first time it matches. TRUE or FALSE</td>
</tr>
<tr>
<td>AltID</td>
<td>0..N</td>
<td>Inherited from IdentifiableType (See 8.1.1)</td>
</tr>
<tr>
<td>Metadata</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1.2) May be used here to include metadata describing the program, chapter or advertisement that begins at this MediaPoint.</td>
</tr>
<tr>
<td>Ext</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
</tbody>
</table>
Upon a match (time or signal) the referenced Policy(s) shall be removed.

0..N

Upon a match (time or signal) the referenced Policy(s) shall be applied.

Apply

0..N

If supplied and within the bounds of @effective and @expires should be evaluated for matching upon the detection of any signal in the referenced Media. See 8.4.1 for semantics.

MatchSignal

0..N

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded

Example MediaPoint (namespace declarations omitted for readability):

```
<MediaPoint id="/program/20997C44" description="World Cup Curling"
  matchTime="2014-11-05T12:00:00+00:00" source="source-1">
  <AltID>http://dx.doi.org/10.5240/9EF1-2DA2-5C1F-98B4-F784-E</AltID>
  <Apply duration="PT2H">
    <Policy xlink:href="/policy/5"/>
  </Apply>
</MediaPoint>
```

8.4.1. MatchSignal

MatchSignal provides the context to evaluate and identify any component of a fully expressed XML representation of a qualified SCTE 35 signal as a set of XPath 2.0 assertions. When the assertions are evaluated and found to return an affirmative response, the Policy related to the MediaPoint would then also be evaluated. The MatchSignal element wraps a sequence of Assert XPath expressions and if the set of XPath 2.0 assertions yield a negative result, the Policy related to the MediaPoint shall not be removed or applied. The @match attribute needs to be consulted for the level of inclusivity/exclusivity. The MatchSignal would be a match, which results in application (or removal) of the Policy if all of the Assert Xpath expressions evaluate to true when the @match is set to “ALL”.

The MatchSignal would be a match, which results in application (or removal) of the Policy if any of the Assert Xpath expression evaluates to true when the @match is set to “ANY”.

The MatchSignal would be a match, which results in application (or removal) of the Policy only if each Assert Xpath expression evaluates to false when the @match is set to “NONE”.

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@match</td>
<td>OD</td>
<td>One of the following values: ALL – All Assert statements shall evaluate to true ANY – At least one Assert statement shall evaluate to true NONE – None of the Assert statements shall evaluate to true default: ALL</td>
</tr>
<tr>
<td>@schema</td>
<td>O</td>
<td>Schema used to evaluate the Assert statements. Defaults to (use the urn want one that says xml from 214)</td>
</tr>
<tr>
<td>@signalTolerance</td>
<td>O</td>
<td>A duration, that when added to the MediaPoint/@matchTime is the time at which the parent MediaPoint shall be activated if the signal has not yet been matched.</td>
</tr>
</tbody>
</table>
This element carries an XPath 2.0 expression as if it were going to be evaluated against the SCTE 35 schema compliant XML document. An implementation should evaluate the expression against the SCTE 35 schema compliant document but may choose other methods outside the scope of this standard.

An expression, when evaluated, results in a positive match for the **Assert**, returning true as if the fn:boolean() had been applied, false otherwise.

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: `<minOccurs>..<maxOccurs>`, where N=unbounded

**Example SCTE 35 signal (namespace declarations omitted for readability):**

```xml
<SpliceInfoSection>
  <TimeSignal>
    <SpliceTime ptsTime="491203647"/>
  </TimeSignal>
  <SegmentationDescriptor segmentationEventId="1342177265">  
    <DeliveryRestrictions noRegionalBlackoutFlag="false" archiveAllowedFlag="false" webDeliveryAllowedFlag="false" deviceRestrictions="3"/>
    <SegmentationUpid segmentationUpidType="8">000000001EA25F7D</SegmentationUpid>
    <SegmentationUpid segmentationUpidType="8">000000001EA25F7E</SegmentationUpid>
  </SegmentationDescriptor>
  <AvailDescriptor providerAvailId="555"/>
</SpliceInfoSection>
```

A **MatchSignal** below would evaluate to ‘true’

```xml
<MatchSignal match="ALL">
  <Assert>//SegmentationDescriptor/SegmentationUpid[@segmentationUpidType=8]</Assert>
  <Assert>//SegmentationDescriptor/SegmentationUpid[text()='000000001EA25F7D']</Assert>
</MatchSignal>
```

A **MatchSignal** below would evaluate to ‘true’

```xml
<MatchSignal match="ALL">
  <Assert>//SegmentationUpid[@segmentationUpidType=8 and .='000000001EA25F7D']</Assert>
</MatchSignal>
```

A **MatchSignal** below would evaluate to ‘false’ because the segmentation UPID does not match.

```xml
<MatchSignal match="ALL">
  <Assert>//SegmentationDescriptor/SegmentationUpid[@segmentationUpidType=8]</ Assert>
  <Assert>//SegmentationDescriptor/SegmentationUpid[text()= '000000001EA25F7E']</Assert>
</MatchSignal>
```

A **MatchSignal** below would evaluate to ‘true’ because @match attribute specifies ANY.

```xml
<MatchSignal match="ANY">
  <Assert>//SegmentationDescriptor/SegmentationUpid[@segmentationUpidType=8]</Assert>
  <Assert>//SegmentationDescriptor/SegmentationUpid[text()= '000000001EA25F7E']</Assert>
</MatchSignal>
```

A **MatchSignal** below would evaluate to ‘false’ because the segmentation UPID does match.

```xml
<MatchSignal match="NONE">
  <Assert>//SegmentationDescriptor/SegmentationUpid[@segmentationUpidType=8]</Assert>
  <Assert>//SegmentationDescriptor/SegmentationUpid[text()= '000000001EA25F7E']</Assert>
</MatchSignal>
```

Examples of **MatchSignal** using a different schema to evaluate in this case a watermark. Note this is just the decoded data in the MatchSignal from whatever watermark method was used such as ATSC A335. (namespace declarations omitted for readability):

```xml
<MatchSignal schema="https://xyz.org/schemas/xyz.xsd">
  <Assert>/XYZ/Watermark/PublisherId[text()= '1001']</Assert>
</MatchSignal>
```
A MatchSignal below would evaluate to ‘true’ because the PublisherId does not match.

A MatchSignal below would evaluate to ‘true’ because @match attribute specifies ANY.

A MatchSignal below would evaluate to ‘true’ because multiple MatchSignal will be true if any one matches.

8.4.2. Remove

Removes the referenced Policy so it is no longer in effect. Note, Remove, removes all instances of a Policy, even if the Policy is in the state from multiple Apply actions. Also note, that all Removes are handled prior to any Apply in a MediaPoint, if they are both present.

Table 11 - Semantics of the Remove element

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>1..1</td>
<td>A reference to the Policy to be removed.</td>
</tr>
</tbody>
</table>

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded

Example Remove (namespace declarations omitted for readability).

8.4.3. Apply

Apply indicates the action to be taken on a Policy. Per this specific action, the @priority and then precedence order shall be enforced should more than one Policy be in effect. The @priority attribute is provided as a means for the provider to convey relative priority between resources. Details of a provider’s implementation of the @priority attribute should be described in the provider’s User’s Guide (see Appendix C).
Table 12 - Semantics of the Apply element

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@duration</td>
<td>O</td>
<td>The length of time that the associated Policy will be applied. When this value is present, the Policy shall be removed once the duration has passed from the time the Policy was actually applied. Note that the application time of the Policy is dictated by the parent MediaPoint element.</td>
</tr>
<tr>
<td>@priority</td>
<td>O</td>
<td>An integer value representing the priority at which this policy should be applied, with “0” being the highest.</td>
</tr>
<tr>
<td>Policy</td>
<td>1..1</td>
<td>A reference to the Policy to be applied.</td>
</tr>
</tbody>
</table>

Example **Apply** (namespace declarations omitted for readability). Note in this example that the Policy will be implicitly removed after 2 hours based on the value of the @duration attribute.

```xml
<MediaPoint id="/program/20997C44" description="World Cup Curling"
    matchTime="2014-11-05T12:00:00+00:00" source="source-1">
    <Apply duration="PT2H" priority="10">
        <Policy xlink:href="/policy/5"/>
    </Apply>
</MediaPoint>
```

8.5. **Policy**

Policy defines one or more Actions against a defined set of Audience(s). A Policy may allow or restrict behaviors, presentation, or other end-user experiences related to the rights, protections, or other rules of the referenced Media. Note that application of Policy may be subject to managed infrastructure outside the control of the provider.

A Policy is a collection of ViewingPolicy(s), which is the literal encapsulation of Audience and one or more actions.

Alternate content policy is comprised primarily of a definition of an Audience-Action pair where the action defined is applied (or removed) to the audience of which a user of the Media may be a member of at any given point in time.

A Policy is applied or removed by association with a MediaPoint.

Table 13 - Semantics of the Policy element

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@xlink:href</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>AltID</td>
<td>0..N</td>
<td>Inherited from IdentifiableType (See 8.1.1)</td>
</tr>
<tr>
<td>Metadata</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1.2)</td>
</tr>
<tr>
<td>Ext</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>ViewingPolicy</td>
<td>0..N</td>
<td>At least one shall be provided if Policy element is not a reference (i.e. @xlink:href is not present).</td>
</tr>
</tbody>
</table>

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded.
Example Policy (namespace declarations omitted for readability).

```xml
<Policy id="/policy/1">
  <ViewingPolicy xlink:href="/viewingPolicy/1"/>
  <ViewingPolicy xlink:href="/viewingPolicy/2"/>
  <ViewingPolicy xlink:href="/viewingPolicy/3"/>
</Policy>
```

8.6. ViewingPolicy

A ViewingPolicy is an association of one or more actions to a defined Audience. Policy is said to be applied (or be removed) when the attributes of a user or device match any of the Audience(s) in a ViewingPolicy. Upon a single match, the system shall not continue evaluation of Audience elements within a Policy context (i.e. within a Policy, the first ViewingPolicy of which an Audience is a member applies). However, multiple Policy(s) may be evaluated at the same time resulting in overlapping Audiences with potentially conflicting Actions. In such a scenario, the enforcement shall follow the Policy precedence rules outlined in section 10.

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@xlink:href</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>AltID</td>
<td>0..N</td>
<td>Inherited from IdentifiableType (See 8.1.1)</td>
</tr>
<tr>
<td>Metadata</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1.2)</td>
</tr>
<tr>
<td>Ext</td>
<td>0..1</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>Audience</td>
<td>0..1</td>
<td>See 8.7 for semantics. This element shall be provided if the parent element is not a reference (i.e. @xlink:href is not present). Only one Audience element is allowed here, however an Audience may be composed of multiple Audience elements.</td>
</tr>
</tbody>
</table>

| Any                        | 0..N| An element provided using either the standard urn:scte:224:action namespace or a proprietary namespace and expressing an action that corresponds to this ViewingPolicy. Common actions are defined by SCTE external to this specification. At least one element shall be provided if the parent element is not a reference (i.e. @xlink:href is not present). |

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>,<maxOccurs>, where N=unbounded

Example ViewingPolicy (namespace declarations omitted for readability):

```xml
<ViewingPolicy id="/simple">
  <Audience xlink:href="audience/1"/>
  <action:MaxResolution>480</action:MaxResolution>
</ViewingPolicy>
```
8.7. Audience

An Audience is a set of characteristics, which together define a subset of users. An Audience may be characterized in many ways. For example, bound to geography, device or device capability.

Audience and Action definitions are extensible, however values of the Any element types shall have unambiguous definitions so that behavior of the execution is deterministic regardless of implementation.

An Audience element may be comprised of other Audience elements. The @match ALL|ANY|NONE value applies to both contained Audience elements and Audience properties provided using the Any element. For instance, if @match is ALL then all Audience properties and all contained Audience elements shall match the context for the containing Audience to match. If referenced, the Audience shall have been previously defined and provided.

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@lastUpdated</td>
<td>CM</td>
<td>Inherited from ReusableType (See 8.2)</td>
</tr>
<tr>
<td>@xml:base</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@match</td>
<td>OD</td>
<td>default: ALL</td>
</tr>
</tbody>
</table>

One of the following values:
ALL – All nested Audience elements and/or Audience properties shall evaluate to true
ANY – At least one nested Audience element or Audience property shall evaluate to true
NONE – None of the nested Audience elements and/or Audience properties shall evaluate to true

| AltID                   | 0..N | Inherited from IdentifiableType (See 8.1.1) |
| Metadata                | 0..1 | Inherited from IdentifiableType (See 8.1.2) |
| Ext                     | 0..1 | Inherited from IdentifiableType (See 8.1) |
| Audience                | 0..N | Potentially nested Audience |
| Any                     | 0..N | An element provided using either the standard urn:scte:224:audience namespace or a proprietary namespace and expressing a property of the containing Audience. Common audience properties are defined by SCTE external to this specification. |

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded

Example Audience (namespace declarations omitted for readability):

```
<Audience id="/audience/1" match="ANY">
  <audience:Zip>30062</audience:Zip>
</Audience>
```

8.8. Results

A Results element is used to return a collection of <IdentifiableType> elements. This wrapper element shall be used in GET query requests to the ESNI interface, notably the request
for **Audit** elements, to return a collection of elements which meet the specified query parameter criteria. The **Results** wrapper element allows for pagination given the potential for large result sets as described in 9.4.

<table>
<thead>
<tr>
<th>Table 16 - Semantics for the Results element</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Element or Attribute Name</strong></td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>@size</td>
</tr>
<tr>
<td>&lt;IdentifiableType&gt;</td>
</tr>
</tbody>
</table>

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded

Example **Results** (namespace declarations omitted for readability):

```xml
<Results size="2">
  <Audit id="/auditguid1" xlink:href="/audience/1" authorization="admin" lastUpdated="2018-04-01T02:00:00+00:00" trigger="PUT" xlink:role="Audience" result="SUCCESS" />
  <Audit id="/auditguid2" xlink:href="/audience/2" authorization="admin" lastUpdated="2018-04-01T02:00:00+00:00" trigger="PUT" xlink:role="Audience" result="SUCCESS" />
</Results>
```

8.9. Audit

An Audit represents a historical event. Audit elements capture actions and activities that directly result in either the state of the implementing system to be altered (such as the application or removal of a Policy) or any evaluation of MediaPoints, Audience(s), Policy, or any other system representation of elements described in this document (such as result of the Assert statements contained in a **MatchSignal** element). An Audit *may* also represent a result of a status query request or a decision query request.

The Audit activity **shall** capture the detail as described of at least, but not limited to, the following actions or activities:

1. Any service call:
   - Media
   - Audience
   - Policy
   - ViewingPolicy
2. Any state change (including system errors or exception states). For example, the PUT'ing of a Media element *may* result in a change of state of Policy(s).
3. Any evaluation of the following: Assert, ViewingPolicy match (Audience member inclusion)
5. Decision query request: Messages that will be used and actions that would be returned for a particular scenario described by the source, audiencetype, audiencevalue, segmentationupidtype, and signaled, for future events (see 9.5).

The @description of the Audit *may* contain notes relevant to the Audit entry.
### Table 17 - Semantics for the AuditType Complex Type

<table>
<thead>
<tr>
<th>Element or Attribute Name</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>@id</td>
<td>CM</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
<tr>
<td>@description</td>
<td>O</td>
<td>Inherited from IdentifiableType (See 8.1)</td>
</tr>
</tbody>
</table>
| @lastUpdated              | CM  | Inherited from IdentifiableType (See 8.1)  
This value *shall* be the absolute time at which the action described in the @trigger attribute took place. This value *shall* always be present unless the value of @trigger is NONE. |
| @xml:base                 | O   | Inherited from IdentifiableType (See 8.1) |
| @xlink:href                | CM  | A reference to the resource being reported in this Audit. This *shall* match the @id value originally used.  
Note that this use of @xlink:href is not inherited from ReusableType and thus *may* be used in combination with the @id attribute. |
| @xlink:role                | CM  | When @xlink:href is provided, this attribute *shall* be present and provide the name of the resource being referenced. It *may* be the element name of any IdentifiableType (e.g. Media, Policy, etc.) |
| @authorization            | CM  | Authorization token used (if API) or if an action was taken (Policy applied), the authorization of the system that PUT (set) the Policy element. When the trigger is associated with an Authorization event then this value *shall* be provided. |
| @policyMode               | CM  | Indicates either Policy application or removal captured by this Audit. One of:  
APPLY – A Policy was applied. The @trigger will explain the cause.  
REMOVE – A Policy was removed. The @trigger will explain the cause. |
| @trigger                  | M   | Indicates the event that caused this Audit to take place. One of:  
NONE – No definable trigger  
TIME – Caused by arriving at either a defined @matchTime or @matchOffset, subject to @signalTolerance  
SIGNAL – Caused by matching an in-band signal  
DURATION – Caused by reaching the end of a defined duration. Note that this can only be used to indicate the removal of a Policy.  
GET – A client attempted to retrieve a resource from the server using a GET request.  
PUT – A client attempted to add or update a resource on the server using a PUT request.  
DELETE – A client attempted to delete a resource from the server using a DELETE request. |
| @result         | OD default: SUCCESS | STATUS – Provided as a result of a status request. MANUAL – The Audit was triggered manually. One of the following values: SUCCESS – The action defined in @trigger was successful or if the @trigger is STATUS then the associated Policy is active. The @description may be used as an informative note. FAIL – The action defined in @trigger was (fully or partially) unsuccessful or if the @trigger is STATUS then the associated Policy is inactive. The @description shall supply informative descriptive text of what caused the error. |  |
| AltID           | 0..N                | Inherited from IdentifiableType (See 8.1.1) |
| Metadata        | 0..1                | Inherited from IdentifiableType (See 8.1.2) |
| Ext             | 0..1                | Inherited from IdentifiableType (See 8.1) |
| Audit           | 0..N                | Recursive element used to provide more detail. The recursion is used to provide appropriate context. For example, a ViewingPolicy Audit provided as a child of a Policy Audit. |

Conventions used in the tables:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.
For elements: <minOccurs>..<maxOccurs>, where N=unbounded

Example Audit (namespace declarations omitted for readability):
```
<Results size="2">
  <Audit id="/auditguid1" xlink:href="/audience/1"
    authorization="admin" lastUpdated="2018-04-01T02:00:00+00:00"
    trigger="PUT" xlink:role="Audience" result="SUCCESS" />
  <Audit id="/auditguid2" xlink:href="/audience/2"
    authorization="admin" lastUpdated="2018-04-01T02:00:00+00:00"
    trigger="PUT" xlink:role="Audience" result="SUCCESS" />
</Results>
```

9. Service interface definition

The service definitions are simplified one-way interfaces (from provider to distributor) using REST style HTTP request/response with the following basic convention:
```
https://<distributor determined base endpoint>/<provider determined resource URI>
```
where together form a proper, fully qualified URL. For example:
Base: https://esni.somecompany.com
URI: /media/1
Fully qualified, locatable resource: https://esni.somecompany.com/media/1

Media, MediaPoint, Policy, ViewingPolicy, Audience, Audit are the only defined managed resources.
Relative URI’s appearing in a document are always resolved relative to either an element, a document entity, or an external entity however, @id is to always be relative to the document entity.

Assume, for example, that the distributor established a service endpoint at http://host. The provider submits a ViewingPolicy using a PUT to http://host/vp/vp1. The @id attribute
of the resource **shall** always be relative to the service endpoint as shown:

```xml
<ViewingPolicy id="/vp/vp1">
  <Audience xlink:href="/a/44"/>
  <action:Content>SomeContent</action:Content>
</ViewingPolicy>
```

The following submission to the same URL **shall** fail:

```xml
<ViewingPolicy id="/vp1">
  <Audience xlink:href="/a/44"/>
  <action:Content>SomeContent</action:Content>
</ViewingPolicy>
```

Each of the following four examples are valid and equivalent ways to reference this **ViewingPolicy** within a **Policy** that is submitted using PUT http://host/policy/p1. (namespace declarations omitted for readability)

**Relative to document element:**

```xml
<Policy id="/policy/p1">
  <ViewingPolicy xlink:href="/vp/vp1"/>
</Policy>
```

**Fully qualified:**

```xml
<Policy id="/policy/p1">
  <ViewingPolicy xlink:href="http://host/vp/vp1"/>
</Policy>
```

**Relative to explicit @xml:base:**

```xml
<Policy id="/policy/p1" xml:base="http://host">
  <ViewingPolicy xlink:href="/vp1"/>
</Policy>
```

**Relative to explicit, local @xml:base:**

```xml
<Policy id="/policy/p1">
  <ViewingPolicy xml:base="http://host/vp" xlink:href="/vp1"/>
</Policy>
```

Additionally, links **may** be provided to external entities:

```xml
<Policy id="/policy/p1">
  <ViewingPolicy xlink:href="http://someotherhost/vp/vp1"/>
</Policy>
```

This reference would fail given that the resulting URL (http://host/vp1) would not be valid:

```xml
<Policy id="/policy/p1">
  <ViewingPolicy xlink:href="/vp1"/>
</Policy>
```

### 9.1. Broken References

Globally reusable **Policy**, **ViewingPolicy**, and **Audience** definitions can be managed independently of the application or removal of the Policy through @xlink:href on **Media(MediaPoint)**(s).

Missing references to **Policy**, **ViewingPolicy**, and **Audience** or any change in the **Media** or **MediaPoint**(s) which would result in a broken reference **shall not** be allowed and implementations **should** make every effort to prevent broken references from occurring.

Any action that results in a reference of a managed resource being broken (referenced but not accessible from a GET to that resource) is considered invalid and **shall** result in an error preventing the action from occurring. Further, the implementation **shall** log an error, which will be available via the audit interface. A broken reference could result in the failure of the processing chain, therefore it is expected that implementers prevent the state from occurring. A GET request of a resource that does not or no longer exists is not a broken reference and **shall** result in a 404 status code.
9.2. Authentication and Authorization

It is left to the provider and receiver of the SCTE 224 messaging to determine what levels of authentication and authorization are required for their implementation. The parties may elect not to use any form of security or signing if that fits the needs for the 224 data. If signing or authentication is used it should follow AWS Signature Version 4 or OAuth 2.0.

9.2.1. AWS Signature Version 4

See Appendix B for further details.

The signing process shall follow the process specified in AWS signature version 4. This is well documented at aws.amazon.com and there are many open source implementations available.

Clients shall also use a current version of TLS [RFC 8446] [RFC 5246] along with the authorization for all service calls to the defined interfaces.

An X-Amz-Date (x-amz-date) header shall be used and the value specified shall be within 5 minutes of receipt of the request, otherwise a failed authentication error shall result “401 Unauthorized”. The time stamp must be in UTC and in the following ISO 8601 format: YYYYMMDD’T’HHMMSS’Z’. For example, 20150830T123600Z is a valid time stamp. Do not include milliseconds in the time stamp.

AWS signature version 4 requires Authentication Parameters, which include the credential scope. Distribution of the credential used for the signing is outside of the scope of this standard.

If the receiver of the 224 content will be using an AWS service such as an API Gateway then they will create the credential and share that information with the provider. The credential scope has the following syntax:

<Access Key ID>/<YYYYMMDD>/<AWS Region>/<service name>

X-Amz-Credential=AKIDEXAMPLE%2F20150830%2Fus-east-1%2Fiam%2Faws4_request&

If the dates don't match, AWS rejects the request, even if the time stamp is only seconds away from the date in the credential scope. For example, AWS will reject a request that has an x-amz-date header value of 20151014T235959Z and a credential scope that has the date 20151015.

If AWS is not utilized then append the credential scope value, followed by a newline character. This value is simply the termination string ("esni") in lowercase characters.

The sender should implement retries on 403 failures.
9.2.2. OAuth 2.0

Implementors may choose to use OAuth 2.0 [RFC 6749] for authentication of the SCTE 224 feed. The implementation of the OAuth protocol and authorization are beyond the scope of this standard and will need to be agreed upon by the sending and receiving parties. OAuth does not protect the content of the 224 feed and this standard is silent on that.

9.3. Common Interface

All resources in this specification (Media, Audience, Policy, ViewingPolicy, Audit) shall support a common RESTful HTTP interface in addition to a general-purpose query interface, which should be some portion of the URL of the resource. For example, if the resource PUT is identified by /media/1 off of a base, the resource shall be available to GET /media/1, the general-purpose query interface could be off the base. Top-level resources are defined in the XML Schema as global elements with the exception of the Results element, which is a generic container.

The use of HTTP shall be required within the general RFC 7231 guidelines. Methods used outside the ones described explicitly by an implementation should respond with the appropriate HTTP status code.

9.3.1. GET

A successful request shall result in a response with HTTP status code 200 and the response body shall contain the resource formatted per this specification.

The service may use any valid HTTP status code (e.g. 3xx, 4xx, 5xx) to notify the client of an exception. The service shall not use a 2xx status code when there is an exception of any kind. The service may provide either Last-Modified or ETag headers in a GET response and then process conditional requests for subsequent responses.

9.3.2. PUT

A successful request to PUT a new resource shall result in a HTTP status code 201. A request to PUT an existing resource (update) shall result in a HTTP status code of 204 with no content body.

The service may use any valid HTTP status code (e.g. 3xx, 4xx, 5xx) to notify the client of an exception. The service shall not use a 2xx status code when there is an exception of any kind. Some resources (e.g. Audit) are read-only in which case any request to use this method shall result in HTTP status code 405.

Example Request:

```
PUT /media/1 HTTP/1.1
Host: esni.somecompany.com
Content-Type: application/xml
Date: Sun, 06 Nov 2018 08:49:37 GMT
Authorization: HMAC-SHA256 Credential=client_id/esni, SignedHeaders=content-type;date;host,
Signature=29dc7257e71b19699d57fb2313b2b36cf54222f60c163a69982c877b1a6d3965

<?xml version="1.0" encoding="UTF-8"?>
<Media xmlns="http://www.scte.org/schemas/224"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 id="/media/1" description="TRU" lastUpdated="2018-02-03T19:31:32.3280038Z">
```

<MediaPoint id="/mp1" description="Start of Program 1">
Example Response:

HTTP/1.1 201 Created

9.3.3. DELETE

A successful request to DELETE an existing resource shall result in HTTP status code of 204. Some resources (e.g. Audit) are read-only in which case any request to use this method shall result in HTTP status code 405.

9.3.4. POST

A POST request is not defined by this specification and should result in HTTP status code 405 (Method Not Allowed).

9.4. GET Queries

A GET against base service endpoint shall return a Results element including a list of <IdentifiableType> elements matching the specified query criteria. If the query-string is not present, then information for all <IdentifiableType> elements meeting the defaults is returned. An implementation may constrain the maximum returned dataset size if the requesting query is either unconstrained or exceeds an implementation’s maximum. The query string parameters are used to scope the list requests, and follow the HTTP path portion of the request using the following standard form:

?parameter=value&parameter=value...
### Table 18 - Service Query Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>altID</td>
<td>O</td>
<td>Limit the results to entries with a specified AltID.</td>
</tr>
<tr>
<td>role</td>
<td>O</td>
<td>Limit the results to entries with a specified type (e.g. Audit, Audience, Media, MediaPoint, Policy, ViewingPolicy). If no role is specified then all types will be included. Multiple role values may be present.</td>
</tr>
<tr>
<td>limit</td>
<td>O</td>
<td>Indicates the maximum number of entries to be returned.</td>
</tr>
<tr>
<td>updatedAfter</td>
<td>O</td>
<td>Limit the results to entries which have @lastUpdated after the specified dateTime. This parameter should be URL-encoded. This parameter value shall chronologically follow updatedBefore.</td>
</tr>
<tr>
<td>updatedBefore</td>
<td>O</td>
<td>Limit the results to entries which have @lastUpdated before the specified dateTime. This parameter should be URL-encoded. This parameter value shall chronologically precede updatedAfter.</td>
</tr>
<tr>
<td>status</td>
<td>O</td>
<td>Use of this parameter explicitly calls for a status audit at a particular point in time defined by the value. The value shall be formatted as an explicit dateTime and should be URL-encoded.</td>
</tr>
<tr>
<td>offset</td>
<td>OD default: 0</td>
<td>Specifies the starting entry in the results (zero-based list). If no offset is specified, the beginning of the list is the first entry in Results.</td>
</tr>
</tbody>
</table>

Conventions used in the tables: M=Mandatory, O=Optional, OD=Optional with Default Value

### 9.5. GET Decision Request Queries

A GET against decision request service endpoint shall return a Results element including a list of elements used in providing a decision for the decision query request parameters: ?parameter=value&parameter=value... The source, eventtime, audiencetype, and audiencevalue, are required to get a decision response, if the signal information is also available, then it is used as the trigger as well. The response to the query request is a Results message with the Media, MediaPoint(s), Policy(s), ViewingPolicy(s), Audience(s), and actions used to make the decision.
Table 19 – Decision Request Query Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Use</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>M</td>
<td>The source of the media the user is trying to watch.</td>
</tr>
<tr>
<td>eventtime</td>
<td>M</td>
<td>The time of the event being requested</td>
</tr>
<tr>
<td>audiencetype</td>
<td>M</td>
<td>An enumeration that's used to describe the audience characterization type from either the standard urn:scte:224:audience namespace or a proprietary namespace and expressing a property of the containing Audience.</td>
</tr>
<tr>
<td>audiencevalue</td>
<td>M</td>
<td>simple value providing the audience characterization based on the type (i.e., for Zip audience it could be “80202”).</td>
</tr>
<tr>
<td>segmentationupidtype</td>
<td>O</td>
<td>segmentationupidtype usually representing “16” a program start or “17” a program end. If the segmentationupidtype is not present, the request will be considered a time-based request.</td>
</tr>
<tr>
<td>signalid</td>
<td>O</td>
<td>Text value used to match in the MediaPoint’s assert element along with the segmentationupidtype. If the signalid is not present, the request will be considered a time-based request.</td>
</tr>
</tbody>
</table>

Conventions used in the tables: M=Mandatory, O=Optional, OD=Optional with Default Value

9.6. Managing Foreign Reference Updates

It is expected that the distributor will resolve and retrieve foreign references (@xlink:href points to an external system) when they are encountered as the result of a PUT of a resource. However, as the distributor will not be aware of entity updates in the foreign reference, it is incumbent on the provider who originally sent the reference to notify the distributor of any updates. The provider shall signal the update to the distributor by setting the @lastUpdated attribute of the <IdentifiableType> containing the referenced element. The distributor shall re-evaluate the applicable references at this point and take resulting actions. An example follows.

Assume provider has PUT the following Policy to the distributor with a reference to ViewingPolicy defined in an external system (http://someotherhost):

```
<Policy id="/policy/p1" lastUpdated="2018-04-01T02:00:00+00:00">
  <ViewingPolicy xlink:href="http://someotherhost/vp/vp1"></ViewingPolicy>
</Policy>
```

If the definition of the ViewingPolicy is modified on “someotherhost” on the following day then the provider should notify the distributor by changing the @lastUpdated attribute of that Policy element:

```
<Policy id="/policy/p1" lastUpdated="2018-04-02T11:53:00+00:00">
  <ViewingPolicy xlink:href="http://someotherhost/vp/vp1"></ViewingPolicy>
</Policy>
```

10. Policy Lifecycle and precedence

It is important to understand the lifecycle of a Policy and how overlapping policies can be effectively managed.
10.1. Audience Membership

Audience may be comprised of other Audience elements. Audience describes characteristics of a population based on identified and extensible set of attributes. One is considered a member of that Audience if, depending on the matching rules of the Audience, any of the attributes are characteristic of that member. Additionally, one shall be considered a member of the first Audience attribute set that matches for a given Policy.

10.2. Policy Lifecycle

A Policy shall only be applied or removed through the use of MediaPoints. The impact of additions, subtractions, and updates to MediaPoints to a Media context are explained as follows:

1. There are two modes associated with the application of a Policy to a MediaPoint, “apply” and “remove” through the Apply and Remove elements respectively. A Policy is applied or removed when:
   a. the MediaPoint element has a @matchTime or @matchOffset value that matches the referenced relative time point and an Apply or Remove element is provided. If an Apply/@duration is specified, there is an implicit Remove to occur at the time that the Policy was applied plus the duration specified in the @duration attribute.
   b. the MediaPoint element contains a MatchSignal element that matches a corresponding SCTE 35 (or other) signal relative to the referenced Media and an Apply or Remove is specified, there is an implicit Remove indicated to occur at the time of receipt of the actual match of the signal plus the duration specified in the @duration attribute.
   c. both a @matchTime or a @matchOffset and MatchSignal element are in use and either the MatchSignal matches or the @matchTime/@matchOffset matches per the same semantics as noted in (a) and (b).
   d. neither the @matchTime, @matchOffset nor MatchSignal are present and the referenced Policy is considered to be “always” applied as long as it is present in the Media/MediaPoint.

2. When an updated (version) of the Media is received with differences that result in Policy being applied or removed. Such as:
   a. A new Media element containing a MediaPoint element in a previous version that is updated to no longer contain that MediaPoint element. The Policy associated with the MediaPoint shall be removed and any Policy that should be in effect as a result of evaluation at that point in time shall be in effect.
   b. A referenced Policy is added, deleted or updated
   c. An Audience or ViewingPolicy of a referenced Policy are added, deleted or updated
   d. Any MediaPoint, Policy, ViewingPolicy, or Audience that references global elements that are broken (reference a value that are not present) shall be considered an invalid Policy in whole and shall not be evaluated.

3. When a Policy has been actively applied with a @duration set and the duration has passed the referenced Policy shall be implicitly removed.
10.3. Precedence and Stacking

The order of MediaPoint elements is important as it sets the order of precedence for the application and removal of Policy. If provided, the @order attribute provides an explicit order of MediaPoints within the Media. Given that several policies may be active at any given point in time relative to the Media, it is noted that the Policy application is both “additive” and “ordered” in a first-in-last-out order for Apply actions without @priority. When @priority is provided in an Apply, the order of precedence for the active policy set is based on @priority (with “0” being the highest”) and then document order. When multiple active Policies conflict for a given Audience, the topmost Policy in the set should take precedence.
In Figure 4, the outer circle is the universe of our addressable Audience. The colored circles each are a specific addressable Audience. The labels (A, B, C) are the Actions applied to the Audience in the order of which they are applied.

For example, the intersecting “brown” Audience, with the AB (more properly A∩B) label would have both the A Action applied (or removed) AND the B Action applied (or removed) in that order thereby B having a higher precedence, in terms of the Action applied or removed, over A should the Actions conflict in some way.

The scope of a conflict is when two Actions cannot be applied where the effects of one Action are not completely exclusive or independent of another Action.

Example: A∩B

Precedence shall be determined by a first-in-last-out order for Apply actions without @priority. When @priority is provided in an Apply, the order of precedence for the active policy set is based on @priority (with “0” being the highest”) and then the document order by which, Policy declared later in a document is said to have higher precedence. The Policy is applied or removed as indicated by the use of MediaPoint matching.

Example: A∩B∩C

Example: With priority. For a Media that contains the following MediaPoints in alphabetical order. MediaPoint V has Apply for Policy V with priority 5, MediaPoint W has Apply for Policy W with no priority. At the point where MediaPoints V and W have been triggered, Policy V is on top, with Policy W below it. Next, MediaPoint X has Apply for Policy X with priority 5. When MediaPoint X is triggered, Policy X is now on top, because it is tied, priority order wise, with Policy V, but it is later in the document order. Now, MediaPoint Y has Apply for Policy Y, with priority 5, and Remove for Policy V, so Policy Y is now the top policy.
## Appendix A: Use cases and Examples

Use Case Examples (all examples, namespace declarations are omitted for readability):

1. An Audience for users in Boulder, CO. Note that the user might be in any of the listed zip codes:

   ```xml
   <Audience id="/audience/co/boulder" match="ANY">
   <audience:Zip>80301</audience:Zip>
   <audience:Zip>80302</audience:Zip>
   <audience:Zip>80303</audience:Zip>
   <audience:Zip>80304</audience:Zip>
   <audience:Zip>80305</audience:Zip>
   </Audience>
   ```

2. An Audience of authenticated users on a private network:

   ```xml
   <Audience id="/audience/auth/private" match="ALL">
   <audience:Authenticate>true</audience:Authenticate>
   <audience:Network>PRIVATE</audience:Network>
   </Audience>
   ```

3. An Audience of users with devices having digital output:

   ```xml
   <Audience id="/audience/deviceGroup/23" match="ALL">
   <audience:Feature>DIGITAL_OUTPUT</audience:Feature>
   </Audience>
   ```

4. An Audience of users in a Placement Opportunity:

   ```xml
   <Audience id="/audience/PLACEMENT_OPPORTUNITY" match="ALL">
   <audience:Default>PLACEMENT_OPPORTUNITY</audience:Default>
   </Audience>
   ```

5. An Audience of users with devices that are NOT running with Linux or Android:

   ```xml
   <Audience id="/audience/deviceGroup/42" match="NONE">
   <audience:OS>LINUX</audience:OS>
   <audience:OS>ANDROID</audience:OS>
   </Audience>
   ```

6. An Audience of users in the United States using devices with dedicated displays (such as a tablet) and experiencing technical difficulties:

   ```xml
   <Audience id="/audience/tech_difficulty" match="ALL">
   <audience:ISO3166>US</audience:ISO3166>
   <audience:Default>TECHNICAL_DIFFICULTY</audience:Default>
   <audience:DeviceFeature>DEDICATED_DISPLAY</audience:DeviceFeature>
   </Audience>
   ```

7. A ViewingPolicy to display a slate for an Audience experiencing technical difficulties:

   ```xml
   <ViewingPolicy id="/viewingpolicy/1">
   <Audience xlink:href="/audience/tech_difficulty"/>
   <action:Content>slates/tdslate.mpg</action:Content>
   </ViewingPolicy>
   ```

8. A ViewingPolicy to blackout an Audience Boulder:

   ```xml
   <ViewingPolicy id="/viewingpolicy/2">
   <Audience xlink:href="/audience/co/boulder"/>
   <action:Content>urn:scte:224:action:blackout</action:Content>
   </ViewingPolicy>
   ```

9. A ViewingPolicy to restrict an Audience to SD (resolution=480) only:

   ```xml
   <ViewingPolicy id="/viewingpolicy/3">
   <Audience xlink:href="/audience/deviceGroup/23"/>
   <action:MaxResolution>480</action:MaxResolution>
   </ViewingPolicy>
   ```

10. A ViewingPolicy to allow the distributor to perform dynamic ad insertion for an Audience:

    ```xml
    <ViewingPolicy id="/viewingpolicy/4">
    <Audience xlink:href="/audience/co/boulder"/>
    <action:Dai>true</action:Dai>
    </ViewingPolicy>
    ```

11. A Policy with multiple ViewingPolicy(s):

    ```xml
    <Policy id="/policy/1">
    <ViewingPolicy xlink:href="/viewingpolicy/1"/>
    <ViewingPolicy xlink:href="/viewingpolicy/2"/>
    </Policy>
    ```
12. Use Case: Show alternative content to users unless they are using a location-aware device and are within the boundaries of Denver county. Furthermore, re-check that the user is within the boundary at least once every 10 minutes.
   a. An Audience of users with location-aware devices in Denver county:

   ```xml
   <Audience id="/audience/1" match="NONE">
   <Audience match="ALL">
   <audience:Feature>LOCATION_AWARE</audience:Feature>
   <audience:FIPS>08031</audience:FIPS>
   </Audience>
   </Audience>
   ``

   b. A ViewingPolicy to show alternative content and revalidate every 10 minutes:

   ```xml
   <ViewingPolicy id="/viewingpolicy/5">
   <Audience xlink:href="/audience/1"/>
   <action:Content>content/134322233</action:Content>
   <action:Revalidate>PT10M</action:Revalidate>
   </ViewingPolicy>
   ``

13. Use Case: Show alternative football games instead of the national game of the week for local audiences. Note that only one of the ViewingPolicy(s) may be applied. Evaluate each ViewingPolicy in document order until the first match is found.

c. An Audience of users in either Indiana or New Jersey:

   ```xml
   <Audience id="/audience/njin" match="ANY">
   <Audience xlink:href="/audience/new_jersey"/>
   <Audience xlink:href="/audience/indianna"/>
   </Audience>
   ``

d. A ViewingPolicy to show the Indiana vs. Rutgers game to the Audience defined above:

   ```xml
   <ViewingPolicy id="/vp/6">
   <Audience xlink:href="/audience/njin"/>
   <action:Content>Indiana_at_Rutgers</action:Content>
   </ViewingPolicy>
   ``

e. An Audience of users in either Michigan or Maryland:

   ```xml
   <Audience id="/audience/mima" match="ANY">
   <Audience xlink:href="/audience/michigan"/>
   <Audience xlink:href="/audience/maryland"/>
   </Audience>
   ``

f. A ViewingPolicy to show the Michigan State vs. Maryland game to the Audience defined above:

   ```xml
   <ViewingPolicy id="/vp/7">
   <Audience xlink:href="/audience/mima"/>
   <action:Content>MichiganState_at_Maryland</action:Content>
   </ViewingPolicy>
   ``

g. An Audience of users in either Nebraska or Wisconsin:

   ```xml
   <Audience id="/audience/newi" match="ANY">
   <Audience xlink:href="/audience/nebraska"/>
   <Audience xlink:href="/audience/wisconsin"/>
   </Audience>
   ``

h. A ViewingPolicy to show the Nebraska vs. Wisconsin game to the Audience defined above:

   ```xml
   <ViewingPolicy id="/vp/8">
   <Audience xlink:href="/audience/newa"/>
   <action:Content>Nebraska_at_Wisconsin</action:Content>
   </ViewingPolicy>
   ``

i. A Policy to evaluate each of the above defined ViewingPolicy(s) in document order:

   ```xml
   <Policy id="/p/2">
   <ViewingPolicy xlink:href="/viewingpolicy/5"/>
   <ViewingPolicy xlink:href="/viewingpolicy/6"/>
   <ViewingPolicy xlink:href="/viewingpolicy/7"/>
   </Policy>
   ```
14. Use Case: Provide network default behavior for common, but unscheduled situations.
   a. An Audience of users experiencing technical difficulties:
      
      `<Audience id="/audience/tech_difficulty" match="ALL">`  
      `<audience:Default>TECHNICAL_DIFFICULTY</audience:Default>`  
      `</Audience>`

   b. A ViewingPolicy to show a slate stating something like, “we are experiencing technical difficulties” to the Audience defined above:
      
      `<ViewingPolicy id="/vp/tech_difficulty">`  
      `<Audience xlink:href="/audience/tech_difficulty"/>`  
      `<action:Content>TechDifficultiesSlate</action:Content>`  
      `</ViewingPolicy>`

   c. An Audience of users tuned to a network, which is currently off air:
      
      `<Audience id="/audience/off_air" match="ALL">`  
      `<audience:Default>OFF_AIR</audience:Default>`  
      `</Audience>`

   d. A ViewingPolicy to show a slate stating something like, “this network is off air” to the Audience defined above:
      
      `<ViewingPolicy id="/vp/off_air">`  
      `<Audience xlink:href="/audience/off_air"/>`  
      `<action:Content>OffAirSlate</action:Content>`  
      `</ViewingPolicy>`

   e. An Audience of users trying to watch a program, which is signaled as a web blackout in an SCTE 35 Segmentation Descriptor and no other content alternatives are provided:
      
      `<Audience id="/audience/web_blackout" match="ALL">`  
      `<audience:Default>WEB_BLACKOUT</audience:Default>`  
      `</Audience>`

   f. A ViewingPolicy to show a slate stating something like, “this program is blacked out” to the Audience defined above:
      
      `<ViewingPolicy id="/vp/web_blackout">`  
      `<Audience xlink:href="/audience/web_blackout"/>`  
      `<action:Content>WebBlackoutSlate</action:Content>`  
      `</ViewingPolicy>`

   g. A Policy to evaluate each of the above defined ViewingPolicy(s) in document order:
      
      `<Policy id="/p/3">`  
      `<ViewingPolicy xlink:href="/vp/tech_difficulty"/>`  
      `<ViewingPolicy xlink:href="/vp/off_air"/>`  
      `<ViewingPolicy xlink:href="/vp/web_blackout"/>`  
      `</Policy>`

   h. A MediaPoint to indicate that a Policy should be applied as a network default. Notice that there is no @mediaTime, @mediaOffset or MatchSignal, indicating that this Policy should be applied any time the Audience conditions are matched for the Media:
      
      `<MediaPoint id="/mp/1" description="Network Defaults">`  
      `<Apply><Policy xlink:href="/p/1"></Apply>`  
      `</MediaPoint>`

15. A MediaPoint to indicate the start of a program based on wall clock time:
    
    `<MediaPoint id="/mp/2" description="The Office" matchTime="2018-10-04T00:00:00Z">`  
    `<AltID>http://dx.doi.org/10.5240/141D-AD7B-F7A3-80C7-ED4F-U</AltID>`  
    `</MediaPoint>`

16. A MediaPoint to indicate the start of a chapter in a VOD asset:
    
    `<MediaPoint id="/mp/3" description="Chapter 3: Fallen" matchOffset="PT31MSS"/>`

17. A MediaPoint based on an in-band signal. Since there is no @matchTime or @matchOffset, the Policy can only be applied if the signal is found in-band. Furthermore, the signal may
occur at any time within the effective window of the MediaPoint. The Policy **shall** only be
applied if a matching signal is found – otherwise, this MediaPoint **shall** have no effect.

18. A MediaPoint based on an in-band signal with a fallback to wall clock time if the signal is
not found. The nominal time of this MediaPoint is indicated by the @matchTime. In this
example, the @effective attribute allows the signal to arrive up to 5 minutes early. The
@signalTolerance attribute specifies that if the signal does not arrive by 3 minutes after the
@matchTime then the associated Policy **shall** be applied at that time:

19. A MediaPoint, which indicates a Policy **shall** be applied and then subsequently removed in
exactly 1 hour:

20. A MediaPoint, which indicates a Policy **shall** be removed based on a matching in-band
signal. When this MediaPoint is combined with the previous example, it serves to allow for
an optional, early termination of the Policy. The early termination will only occur if a
matching in-band signal is found – otherwise, the duration in the previous example will cause
the Policy to be removed.

21. The following represents a simple network feed all together.
22. The Results of an Audit of the first MediaPoint from example 21:

```xml
<Results size="1">
  <Audit id="/audit/1" xlink:role="Media" xlink:href="/media/tbs" trigger="NONE"/>
  <Audit id="/audit/2" xlink:href="/media/tbs/program/20997C44" trigger="SIGNAL" xlink:role="MediaPoint">
    <Audit id="/audit/3" xlink:href="/media/tbs/program/20997C45" trigger="SIGNAL" xlink:role="MediaPoint">
      <Policy xlink:href="/policy/5" xlink:role="Policy" trigger="APPLY" />
      <ViewingPolicy xlink:href="/viewingpolicy/2" xlink:role="ViewingPolicy" trigger="SIGNAL" />
    </Audit>
  </Audit>
</Results>
```

23. Based on **Audience** in example 1 and **ViewingPolicy** in example 8, the following is an example Result of an **Audit** query request on **ViewingPolicy**

   a. A status request for any ViewingPolicy being applied at 2018-04-01 2:00AM UTC, referencing an Audience with @id="audience/co/boulder":

   ```
   GET https://esni.somecompany.com
   /audit?role=ViewingPolicy&audience=%2Faudience%2Fco%2Fboulder&status=2018-04-01T02%3A00%3A00Z
   ```

   b. This returns the following results:

```xml
<Results size="1">
  <Audit id="/audit/1" xlink:role="Media" xlink:href="/media/tbs" trigger="STATUS"/>
  <Audit id="/audit/2" xlink:href="/media/tbs/mp1" trigger="STATUS" xlink:role="MediaPoint">
    <Audit id="/audit/3" xlink:href="/media/tbs/program/20997C44" trigger="STATUS" xlink:role="MediaPoint">
      <Policy xlink:href="/policy/1" xlink:role="Policy" trigger="STATUS" />
      <ViewingPolicy xlink:href="/viewingpolicy/2" xlink:role="ViewingPolicy" trigger="STATUS" />
    </Audit>
  </Audit>
</Results>
```
24. Based on Media in example 21, the following is an example Result of an Audit query request for Policy.

a. A status request for any Policy being applied at 2014-11-06 1:00AM UTC on a Media with @id="/media/tbs"

```
GET https://esni.somecompany.com/audit?role=Policy&status=2014-11-06T01%3A00%3A00Z@media%2Fmedia%2Ftbs
```

b. The following results indicates that one ViewingPolicy has failed:

```
<Results size="1">
  <Audit id="/audit/1" xlink:role="Media" xlink:href="/media/tbs" trigger="STATUS">
    <Audit id="/audit/2" lastUpdated="2018-04-01T02:00:00+00:00" xlink:role="MediaPoint" xlink:href="/media/tbs/mp1" trigger="STATUS">
      <Audit id="/audit/3" lastUpdated="2018-04-01T02:00:00+00:00" result="FAIL" xlink:role="Policy" xlink:href="/policy/7" trigger="STATUS" description="See ViewingPolicy status">
        <Audit id="/audit/4" lastUpdated="2018-04-01T02:00:00+00:00" result="SUCCESS" xlink:role="ViewingPolicy" xlink:href="/viewingpolicy/1" trigger="STATUS"/>
        <Audit id="/audit/5" lastUpdated="2018-04-01T02:00:00+00:00" result="FAIL" xlink:role="ViewingPolicy" xlink:href="/viewingpolicy/2" trigger="STATUS" description="This ViewingPolicy was not executed due to some reason"/>
      </Audit>
    </Audit>
  </Audit>
</Results>
```

25. Based on Media in example 16, the following is an example Result of an Decision query request.

a. A request for a decision 2018-10-01 2:05PM UTC, with an audience of

```
GET https://esni.somecompany.com/decide?source=xyz&audencetype=zip&audiencevalue=80820&eventtime=2018-10-01T01%3A05%3A00Z&segmentationupid=8&signalid=20997C44
```

b. The following results indicates that one ViewingPolicy has failed:

```
<Results size="1">
  <Audit id="/audit/1" xlink:role="Media" xlink:href="/media/tbs" trigger="STATUS">
    <Audit id="/audit/2" lastUpdated="2018-04-01T02:00:00+00:00" xlink:role="MediaPoint" xlink:href="/media/tbs/mp1" trigger="STATUS">
      <Audit id="/audit/3" lastUpdated="2018-04-01T02:00:00+00:00" result="FAIL" xlink:role="Policy" xlink:href="/policy/7" trigger="STATUS" description="See ViewingPolicy status">
        <Audit id="/audit/4" lastUpdated="2018-04-01T02:00:00+00:00" result="SUCCESS" xlink:role="ViewingPolicy" xlink:href="/viewingpolicy/1" trigger="STATUS"/>
        <Audit id="/audit/5" lastUpdated="2018-04-01T02:00:00+00:00" result="FAIL" xlink:role="ViewingPolicy" xlink:href="/viewingpolicy/2" trigger="STATUS" description="We have a match so action would be action:Content http://slate1"/>
      </Audit>
    </Audit>
  </Audit>
</Results>
```

26. A ViewingPolicy, which indicates no midroll DAI replacement based on the C3 window for a viewer in a Placement Opportunity. This could be used to protect C3 content replacement.

```
<ViewingPolicy id="/vp/25_C3" description="DAI for C3">
  <Audience xlink:href="/audience/placement_opportunity"/>
  <Capture>
    <StartWindow>
      <StopWindow>
        <MidrollDAI>false</MidrollDAI>
      </StopWindow>
    </StopWindow>
  </Capture>
</ViewingPolicy>
```
27. A ViewingPolicy, which indicates no midroll DAI replacement based on the C7 window for a viewer in a Placement Opportunity. This could be used to protect C7 content replacement.

```xml
<ViewingPolicy id="/vp/25_C7" description="DAI for C7">
  <Audience xlink:href="/audience/placement_opportunity"/>
  <Capture>
    <StartWindow>
      <Offset>0</Offset>
    </StartWindow>
    <StopWindow>
      <Offset>PT7D1H</Offset>
    </StopWindow>
    <MidrollDAI>false</MidrollDAI>
  </Capture>
</ViewingPolicy>
```

28. A ViewingPolicy, which indicates ad exclusion for a viewer in a Placement Opportunity.

```xml
<ViewingPolicy id="/vp/ad_exclusion" description="Ad exclusion">
  <Audience xlink:href="/audience/placement_opportunity"/>
  <AdExclusion>true</AdExclusion>
</ViewingPolicy>
```

29. A Policy, which indicates ad exclusion ViewingPolicy.

```xml
<policy id="/vp/ad_exclusion" description="Ad exclusion">
  <ViewingPolicy xlink:href="/vp/ad_exclusion"/>
</policy>
```

30. A MediaPoint, which indicates an approach to convey break metadata for exclusion, using the urn:scte:224:metadata namespace and the NetworkSpotProduct.

```xml
<MediaPoint id="providerXYZ.com/media/break/1233/start" description="Avail Start">
  <effective>"2016-07-05T14:59:50.0Z"</effective>
  <expires>"2016-07-05T15:10:00.0Z"</expires>
  <matchTime>"2016-07-05T15:00:00.0Z"</matchTime>
  <expectedDuration>"PT60S"</expectedDuration>
  <Metadata>
    <metadata:Slot ownerType="PROVIDER" ownerName="XYZ" DAIModel="SINGLE_ADVERTISER" position=1 duration="PT30S">
      <metadata:Slot ownerType="DISTRIBUTOR" ownerName="ABCD" DAIModel="SINGLE_ADVERTISER" position=2 duration="PT30S">
        <metadata:NetworkSpotProduct productCategory="SUV" productCode="T111"/>
      </metadata:Slot>
    </metadata:Slot>
  </Metadata>
  <Apply duration="PT60S">
    <Policy xlink:href="/policy/ad_exclusion"/>
  </Apply>
  <MatchSignal signalTolerance="PT5M">
    <Assert>
      /SpliceInfoSection/SegmentationDescriptor[@segmentationTypeId=35]/SegmentationUpid[@segmentationUpidType=14 text()='CNPA0484000H']
    </Assert>
  </MatchSignal>
</MediaPoint>
```

31. A MediaPoint, which indicates no midroll DAI replacement based on the C3 window for a viewer in a Placement Opportunity. This MediaPoint also shows an approach to convey break metadata, using AltID element.

```xml
<MediaPoint id="providerXYZ.com/media/break/1234/start" description="Avail Start">
  <effective>"2016-07-05T14:59:50.0Z"</effective>
  <expires>"2016-07-05T15:10:00.0Z"</expires>
  <matchTime>"2016-07-05T15:00:00.0Z"</matchTime>
  <expectedDuration>"PT30S"</expectedDuration>
  <AltID description="Ad-ID">CNPA0484000H</AltID>
  <Metadata>
    <metadata:Slot ownerType="PROVIDER" ownerName="XYZ" DAIModel="SINGLE_ADVERTISER" duration="PT30S" offset="PT0S">
      <metadata:Slot
```
Appendix B: Request signing

The preferred method of signing from this revision of the standard is to use Amazon Web Services signature version 4 as specified by Amazon at https://aws.amazon.com. As the documentation may be updated, we suggest that you search the website for the latest version. This is embedded in many Amazon SDK’s and there are multiple open source implementations available as well.

The instructions below are for a modified version of AWS signing V4 that is used in previous versions of this standard. This method has been deprecated.

This appendix details the process to sign a request. The signature is used to authorize requests submitted to all interfaces.

The process documented herein specifies how to generate the signature value which shall be added to the request with the Authorization header. Adding the Authorization header to the HTTP request is referred to as signing the request.

There are four tasks to be completed to create a signed request. Each task is a multi-step process, with the result of each task being fed into the subsequent task.

**Signing Tasks**

1. Create a Canonical Request
   a. Arrange the request contents into a standard (canonical) format.
   b. Create a hash (digest) of the canonical request and add the hash to the canonical request.
   c. Create a digest of the updated canonical request.

2. Create a String to Sign
   a. The string to sign is composed of specific elements of the request including the algorithm (e.g. SHA256), date, credential and digest (hash) of the canonical request (from Task 1).

3. Create a Signature
   a. Derive a signing key by performing a succession of recursive keyed hash operations (HMAC) on the request date, service and signing value using a supplied secret as the key for the hashing operation.
   b. Calculate a signature using the derived signing key as the hash key

4. Add Signing Information to the Request
   a. Add the calculated signature to the request using the Authorization header
Task 1: Create a Canonical Request For Signature
To begin the signing process, you create a string that includes information from your request in a
standardized (canonical) format. Formatting the request into an unambiguous, canonical format
before signing it ensures that when implementation receives the request, it can calculate the same
signature that you calculated. You must follow the steps here to create a canonical version of
the request; otherwise, your version and the version calculated by the implementer won’t match,
and the request is denied.

The following example shows the pseudocode for how to create a canonical request.

Canonical request pseudocode

```
CanonicalRequest = HTTPRequestMethod + '\n' +
                   CanonicalURI + '\n' +
                   CanonicalQueryString + '\n' +
                   CanonicalHeaders + '\n' +
                   SignedHeaders + '\n' +
                   HexEncode(Hash(RequestPayload))
```

In this pseudocode, Hash represents a function that produces a message digest, typically SHA-
256. (Later in the process you specify which hashing algorithm you’re using.) HexEncode
represents a function that returns the base-16 encoding of the digest in lowercase characters. For
example, HexEncode("m") returns the value 6d rather than 6D. Each input byte must be
represented as exactly two hexadecimal characters.

To show you how to construct the canonical form of an HTTP request, we’ll use the following
sample request. This is what a request might look like as it is sent from the provider to a
distributor, except this example does not include the signing information yet.

Sample request

```
PUT /policy/1 HTTP/1.1
Host: esni.somecompany.com
Content-Type: application/xml
Date: Mon, 16 Mar 2018 22:32:15 GMT

<?xml version="1.0" encoding="UTF-8"?>
<Policy id="/policy/1" xmlns="http://www.scte.org/schemas/224"
     xmlns:xlink="http://www.w3.org/1999/xlink">
  <ViewingPolicy xlink:href="/viewingpolicy/1"/>
  <ViewingPolicy xlink:href="/viewingpolicy/2"/>
</Policy>
```

The sample request is a PUT request (method) that sends an Policy message to the service.
This action takes a single message payload – the reusable Policy.

To create a canonical request, concatenate the following components from each step into a
single string:

1. Start with the HTTP request method (GET, PUT, etc.), followed by a newline character.

Sample request: request method

```
PUT
```

2. Add the canonical URI parameter, followed by a newline character. The canonical URI is
   the URI-encoded version of the absolute path component of the URI—everything in the
   URI from the HTTP host to the question mark character ("?") that begins the query string
   parameters (if any). Then add a newline character.

Normialize URI paths according to RFC 3986 by removing redundant and relative path
components. Each path segment must be URI-encoded. If the absolute path is empty, use a
forward slash (/). In the example request, “audience” follows the host in the URI, so the absolute
path is shown in the following example.

Sample request: canonical URI

```
PUT /policy/1 HTTP/1.1
Host: esni.somecompany.com
Content-Type: application/xml
Date: Mon, 16 Mar 2018 22:32:15 GMT

<?xml version="1.0" encoding="UTF-8"?>
<Policy id="/policy/1" xmlns="http://www.scte.org/schemas/224"
     xmlns:xlink="http://www.w3.org/1999/xlink">
  <ViewingPolicy xlink:href="/viewingpolicy/1"/>
  <ViewingPolicy xlink:href="/viewingpolicy/2"/>
</Policy>
```
3. Add the canonical query string, followed by a newline character. If the request does not include a query string, set this value in the canonical query to an empty string (essentially, a blank line). The example query does not contain a query string.

Sample request: canonical query string (NOTE: intentionally blank given the PUT example)

4. Add the canonical headers, followed by a newline character. The canonical headers consist of a list of all the HTTP headers that you are intend to be validated as part of the request. At a minimum the client shall include host, content-type and date.

Sample request: canonical headers

```
content-type:application/xml
date:Mon, 16 Mar 2018 22:32:15 GMT
host:esni.somecompany.com
```

To create the canonical headers list, convert all header names to lowercase and trim excess white space characters out of the header values. When you trim, remove leading spaces and trailing spaces, and convert sequential spaces in the value to a single space. However, do not remove extra spaces from any values that are inside quotation marks.

The following pseudocode describes how to construct the canonical list of headers:

```
CanonicalHeadersEntry = Lowercase(HeaderName) + ':' + Trimall(HeaderValue)
CanonicalHeaders = CanonicalHeadersEntry0 + CanonicalHeadersEntry1 + ... + CanonicalHeadersEntryN
```

Lowercase represents a function that converts all characters to lowercase. The Trimall function removes excess white space before and after values and from inside non-quoted strings, per RFC 7230 Section 3.2.3.

Build the canonical headers list by iterating through the collection of header names and sorting the headers lowercase character code. Construct each header by using the following rules:

a. Append the lowercase header name followed by a colon.

b. Append a comma-separated list of values for that header. If there are duplicate headers, the values are comma-separated. Do not sort the values in headers that have multiple values.

c. Append a new line ('\n').

Note

Each individual header is followed by a newline character, meaning that the complete list ends with a newline character.

5. Add the signed headers, followed by a newline. This value is a list of the names of the headers that you included in the canonical headers. By adding this list of headers, you tell recipient which headers in the request are part of the signing process. By including this value, you indicate that the implementers service can ignore any additional headers (for example, any headers added by a proxy) for purposes of validating the request.

The host, content-type, and date headers must be included as signed headers. They must be included in the list of signed headers.

Sample request: signed headers

```
content-type;date;host
```

To create the signed headers list, convert all header names to lowercase, sort them by character code, and use a semicolon to separate the header names. The following pseudocode describes how to construct a list of signed headers. LOWERCASE represents a function that converts all characters to lowercase.
SignedHeaders = Lowercase(HeaderName0) + ',' + Lowercase(HeaderName1) + ',' + ... + Lowercase(HeaderNameN)

Build the signed headers list by iterating through the collection of header names, sorted by lowercase character code. For each header name except the last, append a semicolon (',') to the header name to separate it from the following header name.

6. Using a SHA256 hash (digest) function, create a hashed value from the payload in the body of the HTTP request:

Structure of payload

HashedPayload = Lowercase(HexEncode(Hash(requestPayload)))

If the payload is empty, use the empty string as the input to the hash function. For example, suppose that your request includes the following payload:

Sample request: payload

PUT /policy/1 HTTP/1.1
Host: esni.somecompany.com
Content-Type: application/xml
Date: Mon, 16 Mar 2018 22:32:15 GMT

<?xml version="1.0" encoding="UTF-8"?>
<Policy id="/policy/1" xmlns="http://www.scte.org/schemas/224"
xmlns:xlink="http://www.w3.org/1999/xlink">
<ViewingPolicy xlink:href="/viewingpolicy/1"/>
<ViewingPolicy xlink:href="/viewingpolicy/2"/>
</Policy>

The following example shows the result of using HMAC SHA-256 hash of the example payload. (When you create the string to sign (Task 2: Create a String to Sign), you will specify the signing algorithm that you used to hash the payload. This standard will be using HMAC and SHA256, therefore you will specify HMAC-SHA256 as the signing algorithm.) The hashed payload must be represented as a lowercase hexadecimal string.

Sample request: hashed payload

2a7857979b2ecf99c79f23a36015eebd590b9b9178ee137f773be7191e745887

7. To construct the finished canonical request, combine all the components from each step as a single string. As noted, each component ends with a newline character. If you follow the canonical request pseudocode explained earlier, the resulting canonical request is shown in the following example:

Sample request: Canonical form

PUT /policy/1
content-type:application/xml
date:Mon, 16 Mar 2018 22:32:15 GMT
host:esni.somecompany.com
content-type;date;host
2a7857979b2ecf99c79f23a36015eebd590b9b9178ee137f773be7191e745887

8. Create a digest (hash) of the canonical request by using the same algorithm that you used to hash the payload. The hashed canonical request must be represented as a string of lowercase hexadecimal characters. The following sample example shows the result of using HMAC SHA-256 to hash the example canonical request.

Sample request: Hashed canonical request

c960e4c7c1c1d72d7191408834b690f520b0b5f1df72a7950ec8a7de313abd0

You include the hashed canonical request as part of the string to sign in Task 2: Create a String to Sign.
Task 2: Create a String to Sign

The string to sign includes meta information about your request and about the canonical request that you created in Task 1: Create Canonical Request. You will use the string to sign and a derived key that you create later as inputs when you calculate the request signature (Task 3: Create a Signature).

To create the string to sign, concatenate the algorithm, date, credential scope, and the digest of the canonical request, as shown in the following pseudocode. NOTE: The HashedCanonicalRequest can be and should be an empty string for GET and DELETE requests.

Structure of string to sign

\[
\text{StringToSign} = \text{Algorithm} + \text{\textbackslash n} + \text{RequestDate} + \text{\textbackslash n} + \text{CredentialScope} + \text{\textbackslash n} + \text{HashedCanonicalRequest})
\]

As an example, let's construct the string to sign by using the same sample request from Task 1: Create A Canonical Request:

Sample HTTPS request

```
PUT /policy/1 HTTP/1.1
Host: esni.somecompany.com
Content-Type: application/xml
Date: Mon, 16 Mar 2018 22:32:15 GMT

<?xml version="1.0" encoding="UTF-8"?>
<Policy id="/policy/1" xmlns="http://www.scte.org/schemas/224"
    xmlns:xlink="http://www.w3.org/1999/xlink">
    <ViewingPolicy xlink:href="/viewingpolicy/1"/>
    <ViewingPolicy xlink:href="/viewingpolicy/2"/>
</Policy>
```

To create the string to sign

1. Start with the algorithm designation, followed by a newline character. This value is the hashing algorithm that you're using to calculate the digests in the canonical request. (For SHA256, HMAC-SHA256 is the algorithm.)

   \text{HMAC-SHA256}

2. Append the request date value, followed by a newline character. The value must conform to the “preferred” Date/Time formats as specified in RFC 7231 and must include a time zone designator. This value must match the value used in any previous steps. For example:

   \text{Mon, 16 Mar 2018 22:32:15 GMT}

3. Append the credential scope value, followed by a newline character. This value is simply the termination string ("esni") in lowercase characters.

   \text{esni}

4. Append the hash of the canonical request that you created in task 1. This value is not followed by a newline character. The hashed canonical request must be lowercase base-16 encoded, as defined by Section 8 of RFC 4648.

   \text{c960e4c7c1c1d72d7191408834b690f520b0b5ffdf72a79950ec8a7de313abda0}

The following string to sign is a request to PUT Policy element on March 16, 2018.

Sample string to sign

```
HMAC-SHA256
Mon, 16 Mar 2018 22:32:15 GMT
esni
```

```
c960e4c7c1c1d72d7191408834b690f520b0b5ffdf72a79950ec8a7de313abda0
```
Task 3: Calculate the Signature
Before you calculate a signature, you derive a signing key from your provided secret key. (Don't just use your secret key to sign the request.) You then use the derived signing key and the string to sign that you created in Task 2: Create a String to Sign as the inputs to a keyed hash function. The hex-encoded result from the keyed hash function is the signature.

To calculate a signature
1. Derive your signing key. To do this, you use your secret access key to create a series of hash-based message authentication codes (HMACs) as shown by the following pseudocode, where HMAC(key, data) represents an HMAC-SHA256 function that returns output in binary format. The result of each hash function becomes input for the next one.

**Pseudocode for deriving a signing key**

```
kSecret = Your Secret Key
kService = HMAC(kSecret, “esni”)
```

Make sure that you specify the HMAC parameters in the correct order for the programming language that you are using. This example shows the key as the first parameter and the data as the second parameter, but the function you are using might specify the key and data in a different order.

Use the digest for the key derivation. Most languages have functions to compute either a binary format hash, commonly called a digest, or a hex-encoded hash, called a hexdigest. The key derivation requires that you use a digest.

As an example, the follow two example show the inputs to deriving a signing key and the resulting output, where kSecret = superSecretKey!.

**Sample inputs**

```
HMAC("superSecretKey!","esni")
```

2. Calculate the signature. To do this, use the signing key that you derived and the string to sign as inputs to the keyed hash function. After you've calculated the signature as a digest, convert the binary value to a hexadecimal representation.

The following pseudocode shows how to calculate the signature.

```
signature = HexEncode(HMAC(derived-signing-key, string-to-sign))
```

The following example shows the resulting signature if you use the sample signing key and the sample string to sign from Task 2:

**Sample signature**

```
626d60b90ec50654aa8ced29e066febbcd70664648bedefba54b3f025e33c339
```
Task 4: Add the Signing Information to the Request

After you calculate the signature, you add it to the request. The signature information must be added to a request in the following way:

- In a header named Authorization. (Although the header is named Authorization, the signing information is actually used for authentication—establishing who the request came from.)

Adding Signing Information to the Authorization Header

Include signing information by adding it to header named Authorization. The contents of the header are created after you have calculated the signature as described in the preceding steps, so the Authorization header is not included in the list of signed headers.

The following pseudocode shows the construction of the Authorization header.

```
Authorization: algorithm Credential=access key ID/credential scope, SignedHeaders=SignedHeaders, Signature=signature
```

The following example shows a finished Authorization header (Note the example value is a single line, but is folded for readability):

```
Authorization: HMAC-SHA256 Credential=testAccessKeyId1/esni,SignedHeaders=content-type;date;host,Signature=626d60b90ec50654aa8ced29e066feb6cd706664648bedefba54b3f025e33c339
```

Take note of the following:

- There is a space between the algorithm and Credential, not a comma. On the other hand, the SignedHeaders and Signature values are separated from the earlier values using a comma.
- The Credential value starts with the client identifier, which is prefixed with a slash (/) onto the credential scope value that you calculated earlier. In contrast, the secret key is used to derive the signing key for the signature, but is not included in the signing information that's sent in the request.
Appendix C: User’s Guide Recommendations

This ESNI Standard defines the details and format for implementing ESNI, but providers have found that for a distributor to fully utilize the providers implementation and execute the instructions properly, Informative User’s Guides should be created. Each providers user’s guide will be slightly different based on their implementation, but following sections identify the minimum items that should be detailed in a provider’s User’s Guide.

C.1 Audience Messages

C.1.1 Identifiers

This ESNI standard says that the @id element of each message can be any text based Uniform Resource Identifier (URI). Using that guidance, providers should further identify the structure of their identifiers, for audiences, such as the following: {provider}/audience/{callsign}/name as an example of an audience id.

C.4.1 Metadata

This ESNI standard allows for Metadata to use urn:scte:224:metadata or any proprietary namespace to convey information about an Audience. A provider needs to describe the namespace it will use if at all. Additionally, it will need to define the elements of the namespace used and what the consumer is to do with the metadata.

C.1.2 Audience Types

This ESNI audience message allows a large number of audience types based on the audience schema. As a provider, the User’s Guide should detail the audiences used in your implementation and any unique requirements for using your audience definitions.

C.1.3 Audience Uses

This ESNI audience has multiple settings for the @match attribute for audiences. A provider should describe their audience concepts, for example, whether their audiences are whitelist, blacklist, or both.

C.2 ViewingPolicy Messages

C.2.1 Identifiers

This ESNI standard says that the @id element of each message can be any text based Uniform Resource Identifier (URI). Using that guidance, providers should further identify the structure of their identifiers, for ViewingPolicy, such as the following: {provider}/viewingpolicy/{callsign}/name as an example of a ViewingPolicy id.

C.4.1 Metadata

This ESNI standard allows for Metadata to use urn:scte:224:metadata or any proprietary namespace to convey information about a ViewingPolicy. A provider needs to describe the
namespace it will use if at all. Additionally, it will need to define the elements of the namespace used and what the consumer is to do with the metadata.

C.2.2 ViewingPolicy Action Types
This ESNI ViewingPolicy message allows a large number of actions based on the audience schema. As a provider, the User’s Guide should detail the actions used in your implementation and any unique requirements for using your action definitions.

C.3. Policy Messages

C.3.1 Identifiers
This ESNI standard says that the @id element of each message can be any text based Uniform Resource Identifier (URI). Using that guidance, providers should further identify the structure of their identifiers, for Policy, such as the following: {provider}/policy/{callsign}/name as an example of a Policy id.

C.4.1 Metadata
This ESNI standard allows for Metadata to use urn:scte:224:metadata or any proprietary namespace to convey information about a Policy. A provider needs to describe the namespace it will use if at all. Additionally, it will need to define the elements of the namespace used and what the consumer is to do with the metadata.

C.3.1 Priority
This ESNI standard provides a @priority attribute (in the Apply) when a Policy is applied. If a provider is going to utilize the @priority, they need to detail how the priorities are implemented at a minimum.

C.4 Media and MediaPoint Messages

C.4.1 MediaPoint Types
This ESNI standard describes general MediaPoints and “resident” MediaPoints. A provider should detail the use of “resident” MediaPoints relative to their implementation.

C.4.2 Identifiers
This ESNI standard says that the @id element of each message can be any text based Uniform Resource Identifier (URI). Using that guidance, providers should further identify the structure of their identifiers, for Policy, such as the following: {provider}/policy/{callsign}/name as an example of a Policy id.

C.4.2 AltIDs
This ESNI standard says that the AltID element can be any text value. The AltID element does provide a @description attribute to clarify what the alternate id is, but since the descriptions are
only freetext as well, the provider needs to describe what AltIDs an operator can expect and what the description of that identifier will be.

C.4.1 Metadata
This ESNI standard allows for Metadata to use urn:scte:224:metadata or any proprietary namespace to convey information about a Media or MediaPoint. A provider needs to describe the namespace it will use if at all. Additionally, it will need to define the elements of the namespace used and what the consumer is to do with the metadata.

C.4.3 MatchSignal
This ESNI standard leaves the <MatchSignal><Assert> up to the provider, so the provider should provide examples and explanation of the XPath logic used in their <assert> elements, so the distributor can properly handle the XPath matching required to match MediaPoints and SCTE 35 signals.

C.5 Message Delivery
The ESNI standard details the HTTP Restful implementation of ESNI, but a provider must detail their message timing, Media length, and signing requirements.

C.5.1 Message Timing
Each provider has a different timing for their protocol, that impacts storage, management, and execution of ESNI on the distributor side. The provider’s User’s Guide should address questions like, How often is the message set refreshed? How are updates sent? Are messages sent in order?, etc.

C.5.2 Media Size
Each provider has a different length for their protocol, that impacts storage, management, and execution of ESNI on the distributor side. The provider’s User’s Guide should address questions like, How many days are covered by a Media? Do you create a new Media for each day?

C.5.3 Signing Requirements
This ESNI standard details message signing in Appendix B, but if there are additional requirements like https or specific ways keys are exchanged for the ESNI signing, that can be detailed as well.