NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require the use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved
© 2021 Society of Cable Telecommunications Engineers, Inc.
140 Philips Road
Exton, PA 19341
Document Types and Tags

Document Type: Specification

Document Tags:
☐ Test or Measurement ☐ Checklist ☐ Facility
✓ Architecture or Framework ☐ Metric ✓ Access Network
☐ Procedure, Process or Method ☐ Cloud ✓ Customer Premises

Document Release History

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTE 40 2003</td>
<td>6/6/2003</td>
</tr>
<tr>
<td>SCTE 40 2004</td>
<td>1/16/2004</td>
</tr>
<tr>
<td>SCTE 40 2011</td>
<td>11/7/2011</td>
</tr>
<tr>
<td>SCTE 40 2016</td>
<td>6/14/2016</td>
</tr>
</tbody>
</table>

Note: This document is a reaffirmation of SCTE 40 2016. No substantive changes have been made to this document. Information components may have been updated such as the title page, NOTICE text, headers, and footers.
TABLE OF CONTENTS

1.0 Scope ... 7

2.0 DEFINITIONS and Acronyms .. 8
 2.1 Compliance Notation .. 8
 2.2 Glossary .. 8

3.0 Normative references .. 12
 3.1 SCTE References ... 12
 3.2 Standards from other Organizations .. 13

4.0 Informative References .. 13
 4.1 SCTE References ... 13
 4.2 Standards from Other Organizations .. 14

5.0 Reference acquisition ... 15

6.0 PHYSICAL LAYER Characteristics ... 16
 6.1 RF Interface .. 16
 6.1.1 Maximum Individual Carrier Amplitude .. 16
 6.2 Frequency Plan .. 16
 6.3 Communications Channels .. 17
 6.3.1 Forward Application Transport (FAT) Channels .. 17
 6.3.2 NTSC Analog Channels .. 18
 6.3.3 Out-Of-Band Forward Data Channels (FDC) ... 18
 6.3.4 Out-Of-Band Reverse Data Channels (RDC) .. 19
 6.3.5 DOCSIS Upstream and Downstream Channels .. 21
 6.4 Downstream Transmission Characteristics .. 21
 6.4.1 RF Signal Levels and Adjacent Channel Characteristics 23

7.0 Transport Layer Protocols ... 26
 7.1 Forward Application Transport (FAT) Channels .. 26
 7.2 Out-of-Band Forward Data Channels (FDC) ... 27
 7.3 Out-of-Band Reverse Data Channels (RDC) ... 27

8.0 Services and Related Protocol Stacks ... 27
ANSI/SCTE 40 2016 (R2021)

8.1 Audio-Visual Services ... 29
 8.1.1 Analog Audio-Visual Services ... 29
 8.1.2 Digital Audio-Visual Services .. 29
 8.1.3 VBI Services ... 30

8.2 Data Services .. 30

8.3 In-Band Service/System Information .. 30

8.4 Out-of-Band Service/System Information ... 31

8.5 Emergency Alert System (EAS) ... 31

8.6 Closed Captioning .. 32
 8.6.1 Analog Television Programs ... 32
 8.6.2 Digital Television Programs ... 32

8.7 Digital Television (DTV) Content Advisory Information .. 32
LIST OF FIGURES

Figure 1 Cable Network Interface .. 7
Figure 2 FAT Channel Physical Layer Protocol .. 18
Figure 3 Out-of-band Forward Data Channel Lower Layer Protocols 19
Figure 4 Out-of-band Reverse Data Channel Lower Layer Protocols 20
Figure 5 FAT Channel Transport Layer Protocol ... 27
Figure 6 Interrelation of Service Channels, Logic Interfaces and Applications for Scrambled Programming .. 28
Figure 7 Interrelation of Service Channels, Logic Interfaces and Applications for Unscrambled Programming .. 29
Figure 8 Modified Protocol Stack for Audio-Visual Services ... 30
Figure 9 Protocol Stack for Out-of-Band Service/System Information 31
Figure 10 Protocol Stack for Inband EAS .. 32

LIST OF TABLES

Table 1. Digital Cable Network Frequency Bands .. 17
Table 2. FDC Channel: RF Transmission Characteristics .. 19
Table 3. RDC Channel: RF Transmission Characteristics .. 20
Table 4. Analog and FAT Channel: RF Transmission Characteristics .. 22
Table 5. Nominal Relative Carrier Power Levels .. 24
Table 6. Adjacent Channel Characteristics ... 25
Digital Cable Network Interface Standard

1.0 SCOPE

NOTE: This document is identical to SCTE 40 2011 except for informative components such as the title page, NOTICE text, headers and footers. No changes have been made to any text in the document beyond this point, other than headers and footers.

This standard defines the characteristics and normative specifications for the digital network interface between a cable television system and commercially available digital cable products that are used to access multi-channel television programming (See Figure 1). The network interface is also compatible with existing analog and digital set-top terminal equipment owned by cable operators and with terminal equipment developed via the OpenCable™ specification process (See www.opencable.com). All specifications in this document apply at the Demarcation Point except as specifically noted. Specifications noted to apply at the terminal device are applicable regardless of whether that device is owned by the subscriber or the cable operator. The key functional characteristics assumed in this document are the following:

- The cable network provides services utilizing 6-MHz in-band channel(s), out-of-band forward data channel(s), and out-of-band reverse data channel(s). The 6-MHz in-band channels follow the CEA-542-C channel-tuning plan. However, the frequency location can change over time such that analog and digital channels could be located anywhere in the downstream operating range. Nothing in this standard precludes the use of other narrowband or wideband digital signals.

- The 6 MHz in-band channels are used to transport digital services (QAM modulated MPEG-2 transport streams) as well as analog services (NTSC AM-VSB channels). Nothing in this standard precludes the use of other modulation modes.

- Services are either in the clear or protected using conditional access technology.

Figure 1 Cable Network Interface
2.0 DEFINITIONS AND ACRONYMS

2.1 Compliance Notation

<table>
<thead>
<tr>
<th>“SHALL”</th>
<th>This word or the adjective “REQUIRED” means that the item is an absolute requirement of this specification.</th>
</tr>
</thead>
<tbody>
<tr>
<td>“SHALL NOT”</td>
<td>This phrase means that the item is an absolute prohibition of this specification.</td>
</tr>
<tr>
<td>“SHOULD”</td>
<td>This word or the adjective “RECOMMENDED” means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighted before choosing a different course.</td>
</tr>
<tr>
<td>“SHOULD NOT”</td>
<td>This phrase means that there may exist valid reasons in particular circumstances when the listed behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.</td>
</tr>
<tr>
<td>“MAY”</td>
<td>This word or the adjective “OPTIONAL” means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.</td>
</tr>
</tbody>
</table>

2.2 Glossary

- **64 QAM** Quadrature Amplitude Modulation with 64 constellation points
- **256 QAM** Quadrature Amplitude Modulation with 256 constellation points
- **AAL5** ATM Adaptation Layer 5
- **AC-3** A digital audio encoding scheme. The audio encoding format adopted by the ATSC, standardized in A/52[9].
- **AM** Amplitude Modulation
- **AM-VSB** Amplitude Modulation – Vestigial Sideband - used to broadcast analog NTSC video signals.
- **ATM** Asynchronous Transfer Mode - A switching and transport protocol that allows data, voice, and video to be carried over a single physical network. ATM is ideal for interactive applications that require dynamic routing and resource allocation.
- **ATSC** Advanced Television Systems Committee
- **Cable** Cable Television Systems
Carrier
An RF signal used to carry information (video, audio, data) by some modulation scheme.

CEA
Consumer Electronics Association

CFR
Code of Federal Regulations

Closed Captioning
A textual description of dialog in a video program

Complete Main
A complete audio program (dialogue, music and effects)

Composite video
A baseband representation of a video signal containing luminance and chrominance information.

Conditional Access System
A system that controls and permits access to video, audio, and data that is being transmitted.

Content Advisory Descriptor
A defined method for describing the contents of a program based on a number of rating scales.

C/N
Carrier to Noise Ratio

CTB
Composite Triple Beat – a third order distortion caused by mixing three carriers (A+B-C) that falls on the fundamental of a carrier.

CSO
Composite Second Order – The sum effect of all second order distortion products.

Demarcation Point
As specified in FCC Rules 47 CFR Section 76.5(mm), which is typically a point at (or about) twelve inches outside of where the cable wire enters the subscriber’s premises.

dB
Decibel - A logarithmic value of a ratio

dBc
Decibels relative to carrier amplitude

dBm
Decibels relative to one milliwatt

dBmV
Decibels relative to one millivolt across a given impedance (75 ohms in North American cable systems). For direct correspondence to normal settings by common test equipment, in this document, all RF signal and power levels are represented in units of dBmV (decibels relative to 1 millivolt RMS, across 75 ohms). Note that this is used independent of the bandwidth of the signal level being noted, although if not noted the bandwidth is considered to be 6 MHz. The dBmV values measured in any given bandwidth are converted directly to units of dBm (decibels relative to one milliwatt) by subtracting 48.75. For example, a +20 dBmV value in this document is equivalent to -28.75 dBm.

DOCSIS
Data Over Cable Service Interface Specifications

Downstream
Transmission from Headend to terminal device

Drop Cable
A coaxial cable from a subscriber tap to the Demarcation Point
DSM-CC
Digital Storage Media-Command and Control (ISO/IEC 13818-6)

DSG
DOCSIS Set-top Gateway

DTV
Digital Television – A general term for the digital coding and transmission of an Audio / Video Program.

EAS
Emergency Alert System

ES
Elementary Stream – A generic term for a stream of data of one particular type. Typically these streams are of Video or Audio Types.

FAT
(Forward Application Transport) Channel - A data channel carried from the headend to the terminal device in a modulated channel at a rate of 26.97 or 38.81 Mbps. See Annex A of SCTE 07[2]. MPEG-2 transport is used to multiplex video, audio, and data into the FAT channel. The FAT Channel is also considered the “In-band” channel. The FAT channel is used for MPEG-2 compressed video and audio.

FCC
Federal Communications Commission.

FDC
Forward Data Channel - A data channel carried from the headend to the terminal device in a modulated channel at a rate of 1.544 to 3.088 Mbps.

Headend
The control center of a cable television system, where incoming signals are amplified, converted, processed, and combined into a common cable, along with any locally originated programming, for transmission to subscribers.

Host
The part of a generic terminal device that does not contain the network specific characteristics.

HRC
Harmonically Related Carrier

ID
Identifier

IF
Intermediate Frequency. A signal processing stage between RF and baseband.

Interleaving
A communications technique for reordering associated bytes over a longer period of time to reduce the effects of burst noise.

IP
The network layer (layer 3) of the Open Systems Interconnection reference model.

IRC
Incrementally Related Carrier

ITU
International Telecommunications Union

kbps
Kilobits per second- bits per second in thousands

kHz
Kiloherertz - Cycles per second, in thousands

MAC
Media Access Control

Mbps
Megabits per second- bits per second, in Millions
MHz Megahertz - Cycles per second, in Millions
MPEG Moving Picture Experts Group - An international standards-setting group, working to develop standards for compressed full-motion video, audio, and other associated information.
MPEG-2 Refers to the ISO/IEC 13818 multi-part standard
mV Millivolt – Thousandths of a Volt
Noise An undesired or unintended element of a signal.
NTSC National Television Systems Committee – Refers to the Analog Color Television Standard as used in North America
OOB Out-of-Band – Outside of the programming channels band. The OOB channels provide communication channels between the network and the terminal.
PES Packetized Elementary Stream
PHY Physical Layer
PID Packet Identifier – A unique integer value used to identify the contents of an MPEG-2 Transport Stream packet.
POD / POD Module Point of Deployment Module (CableCARD™) - A module to be provided by the MSO that contains all of the network specific characteristics for a terminal device.
p-p Peak to peak
PSI Program Specific Information – Normative data that is necessary for the demultiplexing of transport streams and the regeneration of programs.
PSIP Program and System Information Protocol – A method of describing Naming and Navigation data for a multi program transport stream as defined in ATSC A/65[27].
QPSK Quadrature Phase Shift Keying - A signaling and modulation scheme in which an RF carrier is phase shifted to signal digital data.
Randomization A coding method that provides for even distribution of the symbols in the QAM constellation, which enables the demodulator to maintain proper lock.
RDC Reverse Data Channel - A data channel transmitted from the terminal device to the headend in a modulated channel at a rate of 0.256 to 3.088 Mbps.
Reed Solomon A coding method that adds parity symbols to a data packet thereby providing a forward error correction capability.

RF Radio Frequency – Used to describe the part of the electromagnetic frequency spectrum that is used to transmit video, audio, and data over the air or via coaxial cable.

RRT Rating Region Table

SCTE Society of Cable Telecommunications Engineers - The technical and applied science leader for the cable telecommunications industry for professional development, information, certification and standards.

SI Service/System Information

SMPTE Society of Motion Picture and Television Engineers – A Standards Organization devoted to advancing theory and application in motion imaging, including film, television, video, computer imaging, and telecommunications.

TS Transport Stream – An MPEG-2 Transport Stream as described in ISO/IEC 13818-1[14]

TV Television

Upstream Transmission from terminal device to Headend

V Volt – Unit of Electrical Potential

VBI Vertical Blanking Interval - In analog video, the interval after the last displayed line of video in a field and before the first displayed line of video in the next field, during which a television receiver will synchronize vertically.

3.0 NORMATIVE REFERENCES

The following documents contain provisions, which, through reference in this text, constitute provisions of this standard. At the time of subcommittee approval, the editions indicated were valid. All standards are subject to revision, and parties to agreement based on this standard are encouraged to investigate the possibility of applying the most recent editions of the documents listed below.

3.1 SCTE References

1. ANSI/SCTE 02 2006 : "F" Port (Female Indoor) Physical Dimensions

2. ANSI/SCTE 07 2006 : Digital Video Transmission Standard for Cable Television

ANSI/SCTE 40 2016 (R2021)

8. ANSI/SCTE 18 2007: Emergency Alert Message for Cable

3.2 Standards from other Organizations

11. CEA-23-A: RF Interface Specification for Television Receiving Devices and Cable Television Systems

12. CEA-542-C: Cable Television Channel Identification plan

13. CEA-608-E (ANSI): Line 21 Data Services

4.0 INFORMATIVE REFERENCES

The following documents provide valuable information to the reader but are not required when complying with this standard.

4.1 SCTE References

15. ANSI/SCTE 20 2004: Standard Methods for Carriage of Closed Captions and non-Real Time Sampled Video

17. ANSI/SCTE 106 2010: DOCSIS® Set-Top Gateway (DSG) Specification

19. ANSI/SCTE 128 2010-a: AVC Video Systems and Transport Constraints for Cable Television

20. ANSI/SCTE 157 2008: VC-1 Video Systems and Transport Constraints for Cable Television

21. ANSI/SCTE 22-1 2002R2007: Data-Over-Cable Service Interface Specification DOCSIS 1.0 Radio Frequency Interface (RFI)

4.2 Standards from Other Organizations

25. ITU-T J.83 (12/07): Digital multi-programme systems for television, sound and data services for cable distribution

26. SMPTE 170M: Television - Composite Analog Video Signal - NTSC for Studio Applications

27. ATSC A/65:2009 ATSC Program and System Information Protocol for Terrestrial Broadcast and Cable

28. CEA-708-D: Digital Television (DTV) Closed Captioning

29. CEA-766-C: U.S. and Canadian Region Rating Table (RRT) and Content Advisory Descriptor for Transport of Content Advisory Information Using ATSC A/65, A66 and A67 Program and System Information Protocol (PSIP)

5.0 REFERENCE ACQUISITION

SCTE Standards:

Society of Cable Telecommunications Engineers Inc., 140 Philips Road, Exton, PA 19341
Phone: 1-800-542-5040, Fax: 610-363-5898 Internet: http://www.scte.org;
email: standards@scte.org

CEA Standards:

Global Engineering Documents, World Headquarters, 15 Inverness Way East, Englewood,
CO USA 80112-5776; Phone 800-854-7179; Fax 303-397-2740; Internet
http://global.ihs.com; email global@ihs.com

ANSI/CEA Standards:

American National Standards Institute, Customer Service, 11 West 42nd Street, New York
NY 10036; Phone 212-642 4900; Fax 212-302-1286; email: sales@ansi.org; Internet:
http://www.ansi.org

FCC Documents:

ITS, Inc. 1231 20th Street, N.W. Washington, DC 20036; Phone 202 857 3800 Fax 202
857 3814; Internet: http://www.itsdocs.com/; email: service@itsdocs.com

ATSC Standards:

Advanced Television Systems Committee (ATSC), 1776 K Street NW STE 200 -
Washington, DC 20006-2304; Ph.-202.872.9160 Fax-202.872.9161;
http://www.atsc.org/standards.html

ISO/IEC Standards:

Global Engineering Documents, World Headquarters, 15 Inverness Way East, Englewood,
CO. USA 80112-5776; Phone 800-854-7179; Fax 303-397-2740; Internet:
http://global.ihs.com; email global@ihs.com.

ITU Standards:

ITU Sales and Marketing Service, International Telecommunication Union, Place des
Nations CH-1211, Geneva 20, Switzerland; Phone +41 22 730 6141; Fax +41 22 730
5194; Internet: http://www.itu.org/ email sales@itu.int

OpenCable Specifications:

Cable Television Laboratories, Inc., 400 Centennial Parkway, Louisville, CO 80027;
Phone 303-661-9100; Fax 303-661-9199; Internet: http://www.opencable.com/;
email: opencable@cablelabs.com
6.0 PHYSICAL LAYER CHARACTERISTICS

6.1 RF Interface

The physical interface between the cable TV system and the terminal device at the terminal device input shall be as defined in ANSI/SCTE 02[1].

6.1.1 Maximum Individual Carrier Amplitude

The maximum rms value of any individual received signal whose frequency is between 0.5 MHz and 30 MHz shall not exceed –7 dBm (+42 dBmV across 75 ohms) measured at the input to the terminal device.

No signal power limits are specified between 30 MHz and 54 MHz. Receivers are not expected to operate properly in the presence of signals in the 30 to 54 MHz band near the levels specified for signals below 30 MHz.

The maximum rms value of any individual signal whose frequency exceeds 54 MHz shall be less than 10 mV across a 75 ohm terminating impedance (+20 dBmV) measured at the input to the terminal device. Receivers are not expected to properly receive signals of individual carriers that fall outside the limits of Table 4 line 14.

6.2 Frequency Plan

Cable systems deliver analog and digital services to terminal devices directly connected to the cable system in a downstream passband. This passband is local system-dependent but typically has a 54 MHz lower edge and an upper edge in the range of 300 to 1002 MHz. Within that passband, NTSC analog television signals and Forward Application Transport channels in 6-MHz channels may be present and shall adhere to the standard, HRC or IRC frequency plans of CEA-542[12]. Forward Data Channels may be present in the 70-130 MHz range.

The cable network may support any portion or all of the 5-30 MHz, 5-42 MHz or 5-85 MHz passband in the upstream direction. NTSC analog television signals in 6 MHz channels, as well as other narrowband and wideband signals, may be present anywhere within these network supported passbands. Reverse Data Channels may be present anywhere within the 5-42 MHz passband.
6.3 Communications Channels

The cable network shall have the following communications channels:

1. Forward Application Transport (FAT) channels.
2. Forward Data Channels (FDC).

The cable network may have the following communications channels:

1. NTSC Analog channels.
2. Reverse Data Channels (RDC).
3. DOCSIS Upstream and Downstream Channels

The FDC and RDC are referred to as out-of-band (OOB) channels. Frequency bands for each channel are given in Table 1 below.

<table>
<thead>
<tr>
<th>Table 1. Digital Cable Network Frequency Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT channels and NTSC Analog channels</td>
</tr>
<tr>
<td>OOB FDCs</td>
</tr>
<tr>
<td>OOB RDCs</td>
</tr>
</tbody>
</table>

The cable network may support Reverse Data Channels (RDCs) within any portion or all of the 5 MHz to 42 MHz passband in the upstream direction.

6.3.1 Forward Application Transport (FAT) Channels

The forward application transport channels shall be Quadrature Amplitude Modulation (QAM) channels that comply with ITU J83.B / ANSI/SCTE 07[2]. Either 64 QAM or 256 QAM may be used to transport approximately 26.97 or 38.81 megabits/second, respectively. See Annex A of SCTE 07. FAT channels may be located anywhere in the 54 to 1002 MHz range. The physical layer protocol for FAT channels is shown in Figure 2 FAT Channel Physical Layer Protocol.
6.3.2 NTSC Analog Channels

The analog channels shall be NTSC RF AM-VSB modulated signals in accordance with current cable-system practice and applicable FCC rules. NTSC Analog channels may be located anywhere in the 54 to 1002 MHz range.

6.3.3 Out-Of-Band Forward Data Channels (FDC)

Each forward data channel shall be as defined in ANSI/SCTE 55-1 2009 or ANSI/SCTE 55-2 2008 with the additional requirements specified in Table 2. The FDCs may be located anywhere in the 70 to 130 MHz, and are spaced between the 6-MHz Analog and/or FAT channels. Figure 3 shows the lower layer protocol stacks for the out-of-band FDCs.
Table 2. FDC Channel: RF Transmission Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Transmission Rate</td>
</tr>
<tr>
<td>2.</td>
<td>RF Channel Spacing (Bandwidth)</td>
</tr>
<tr>
<td>3.</td>
<td>RF Frequency Range</td>
</tr>
<tr>
<td>4.</td>
<td>Nominal Carrier Frequency</td>
</tr>
<tr>
<td>5.</td>
<td>Minimum Carrier Level at terminal input</td>
</tr>
<tr>
<td>6.</td>
<td>Maximum Carrier Level at terminal input</td>
</tr>
<tr>
<td>7.</td>
<td>C/(N+I) in Nyquist bandwidth</td>
</tr>
<tr>
<td>8.</td>
<td>Group Delay Variation</td>
</tr>
</tbody>
</table>

Table 2: FDC Channel: RF Transmission Characteristics

ANSI/SCTE 55-2	ANSI/SCTE 55-1
Payload	**Payload**
ATM Cell Format	Data Link Layer
---	---
Link/Physical Layer: | MAC Sublayer |
- Reed-Solomon | - MAC Packet |
- Interleaving | - MPEG-2 TS |
- SL-ESF Frame Payload Structure | Physical Layer: |
- SL-ESF Format | - Randomizer |
- Randomizer | - Reed-Solomon |
- QPSK/differential coding | - Interleaving |
| OOB FDC | QPSK/differential coding |
Lower Layer Protocols | |

Figure 3 Out-of-band Forward Data Channel Lower Layer Protocols

6.3.4 Out-Of-Band Reverse Data Channels (RDC)

When present, each reverse data channel shall be as defined in ANSI/SCTE 55-1 2009 or ANSI/SCTE 55-2 2008, with the additional requirements specified in Table 3. The
RDCs may be present anywhere within the network-supported passband as defined in Table 3. Figure 4 shows the lower layer protocol stacks for the out-of-band RDCs.

<table>
<thead>
<tr>
<th>Table 3. RDC Channel: RF Transmission Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RF Transmission Rate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2. RF Channel Spacing</td>
</tr>
<tr>
<td>(Bandwidth)</td>
</tr>
<tr>
<td>3. RF Frequency Range</td>
</tr>
<tr>
<td>4. Nominal Carrier</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANSI/SCTE 55-2</th>
<th>ANSI/SCTE 55-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payload</td>
<td>Payload</td>
</tr>
<tr>
<td>Data link Layer/AAL5</td>
<td>Data link Layer/AAL5</td>
</tr>
<tr>
<td>MAC Sublayer:</td>
<td>MAC Sublayer:</td>
</tr>
<tr>
<td>– MAC Signaling Message</td>
<td>– MAC Packet sublayer</td>
</tr>
<tr>
<td>– ATM Cell Format</td>
<td>– ATM Cell Format</td>
</tr>
<tr>
<td>Physical Layer:</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>– Reed-Solomon</td>
<td>– Randomizer</td>
</tr>
<tr>
<td>– Randomizer</td>
<td>– Reed-Solomon</td>
</tr>
<tr>
<td>– Burst QPSK/</td>
<td>– Burst QPSK/</td>
</tr>
<tr>
<td>– differential coding</td>
<td>– differential coding</td>
</tr>
</tbody>
</table>

Figure 4 Out-of-band Reverse Data Channel Lower Layer Protocols
6.3.5 DOCSIS Upstream and Downstream Channels

DOCSIS upstream and downstream signals are present on many cable systems. Some of these DOCSIS signals have very similar characteristics to the signals specified in this standard but they are distinct and specified in separate standards including but not limited to SCTE 22-1, SCTE 23-1, SCTE 79-1 and SCTE 135-1. The limits of this standard apply to DOCSIS as an undesired signal.

6.4 Downstream Transmission Characteristics

The Downstream Transmission Characteristics are contained in Table 4 and Table 2. Analog and FAT signals shall meet their respective characteristics specified in Table 4 when measured on the subscriber's premises at the end of a properly terminated Drop Cable. OOB FDC signals shall meet the characteristics specified in Table 2 when measured on the subscriber's premises at the end of a properly terminated Drop Cable.
Table 4. Analog and FAT Channel: RF Transmission Characteristics

<table>
<thead>
<tr>
<th></th>
<th>RF Channel Spacing</th>
<th>6 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RF Frequency Range</td>
<td>54 MHz to 1002 MHz IRC/HRC/Standard Channel Plans.</td>
</tr>
<tr>
<td>3</td>
<td>Transit delay from headend to most distant customer</td>
<td>≤ 0.800 ms (typically much less)</td>
</tr>
<tr>
<td>4</td>
<td>Carrier-to-noise-plus-interference ratio, C/(N+I), in a 6-MHz band where C/(N+I) includes the simultaneous presence of all additive impairments in the 6-MHz channel bandwidth including CTB, CSO, and other forms of discrete interference. The carrier, noise, and interference are all subject to any linear channel distortions (micro-reflections) present in the transmission path.</td>
<td>Not less than 27 dB for 64 QAM; 33 dB for 256 QAM; 43 dB for AM-VSB analog</td>
</tr>
<tr>
<td>5</td>
<td>CTB</td>
<td>Not greater than -53 dBc referenced to inband carrier levels for analog channels.</td>
</tr>
<tr>
<td>6</td>
<td>CSO</td>
<td>Not greater than -53 dBc referenced to inband carrier levels for analog channels</td>
</tr>
<tr>
<td>7</td>
<td>Carrier-to-any other discrete interference (ingress)</td>
<td>Not greater than -53 dBc</td>
</tr>
<tr>
<td>8</td>
<td>AM Hum Modulation</td>
<td>Not greater than 3% p-p</td>
</tr>
<tr>
<td>9</td>
<td>Group Delay Variation</td>
<td>≤ 0.37 μs/MHz across the 6-MHz channel</td>
</tr>
<tr>
<td>10</td>
<td>Chroma / Luma Delay</td>
<td>≤ 170 ns (AM-VSB analog)</td>
</tr>
<tr>
<td>11</td>
<td>Phase Noise</td>
<td>≤-86 dBc/Hz @ 10 kHz offset (relative to the center of QAM signal spectrum)</td>
</tr>
<tr>
<td>12</td>
<td>Maximum Amplitude Variation across the 6-MHz channel (digital channels)</td>
<td>≤ 6 dB p-p</td>
</tr>
<tr>
<td></td>
<td>Maximum Amplitude Variation across the 6-MHz channel (analog channels)</td>
<td>≤ 4 dB p-p</td>
</tr>
</tbody>
</table>
13. Bound for a single dominant micro-reflection

-10 dB at \(\leq 0.5 \mu s \)
-15 dB at \(\leq 1.0 \mu s \)
-20 dB at \(\leq 1.5 \mu s \)
-30 dB at \(\leq 4.5 \mu s \)

Micro-reflections longer than 4.5 microseconds are included under item 4 (of this table) as a contributor to the interference \(I \) in \(C/(N+I) \). Micro-reflections, if present, shall not cause the channel Group Delay Variation and Maximum Amplitude Variation in Table 4.9 and 4.12 respectively to be exceeded.

14. Carrier level at the terminal input

- 64 QAM: -15 dBmV to +15 dBmV
- 256 QAM: -12 dBmV to +15 dBmV
- Analog Visual Carrier (c):
 - 0 dBmV to +15 dBmV
- Analog Aural Carrier:
 - -10 dBe to –17 dBe

6.4.1 RF Signal Levels and Adjacent Channel Characteristics

6.4.1.1 RF Signal Levels

To determine the adjacent channel characteristics between digital and NTSC analog signals, the following information is provided.

The visual signal level of an analog signal is required to be within ± 3 dB of the visual signal level of any adjacent analog channel (within a 6-MHz nominal frequency separation) as specified in FCC Rules 47 CFR Section 76.605(a)(4)(i).

The nominal relative carrier power level is defined as the difference between the power level of each digitally modulated carrier type relative to the reference analog carrier power level, expressed in dB. Each nominal relative carrier power level is uniquely specified within a range and applies to all carriers of a given type for a cable system at the Demarcation Point, as given in Table 5 below.
Table 5. Nominal Relative Carrier Power Levels

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog NTSC</td>
<td>0 dB (reference level)</td>
</tr>
<tr>
<td>256 QAM FAT</td>
<td>-5 ± 2 dB</td>
</tr>
<tr>
<td>QPSK FDC</td>
<td>-8 ± 5 dB</td>
</tr>
<tr>
<td>64 QAM FAT</td>
<td>-10 ± 2 dB</td>
</tr>
</tbody>
</table>

The variation in signal power of each individual carrier shall be within ± 3 dB of its nominal relative carrier power level.

The analog signal power shall be measured as the Peak Envelope Power, which is the average carrier power measured during the horizontal sync interval. The FAT digital signal power shall be measured as the average signal power in a 6 MHz channel. The FDC digital signal power shall be measured as the average signal power over the appropriate bandwidth as defined in SCTE 55-1 or SCTE 55-2.

6.4.1.2 Adjacent Channel Characteristics

The worst-case Adjacent Channel performance shall be characterized according to Table 6.
Table 6. Adjacent Channel Characteristics

<table>
<thead>
<tr>
<th>Desired (D) Channel Modulation</th>
<th>Undesired (U) Adjacent Channel Modulation</th>
<th>Worst Case D/U Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Analog NTSC</td>
<td>64 QAM</td>
<td>+2 dB</td>
</tr>
<tr>
<td>2 Analog NTSC</td>
<td>256 QAM</td>
<td>-3 dB</td>
</tr>
<tr>
<td>3 Analog NTSC</td>
<td>QPSK FDC</td>
<td>-3 dB</td>
</tr>
<tr>
<td>4 64 QAM FAT</td>
<td>Analog NTSC</td>
<td>-18 dB</td>
</tr>
<tr>
<td>5 64 QAM FAT</td>
<td>256 QAM</td>
<td>-15 dB</td>
</tr>
<tr>
<td>6 64 QAM FAT</td>
<td>QPSK FDC</td>
<td>-15 dB</td>
</tr>
<tr>
<td>7 256 QAM FAT</td>
<td>Analog NTSC</td>
<td>-13 dB</td>
</tr>
<tr>
<td>8 256 QAM FAT</td>
<td>64 QAM</td>
<td>-5 dB</td>
</tr>
<tr>
<td>9 256 QAM FAT</td>
<td>QPSK FDC</td>
<td>-10 dB</td>
</tr>
<tr>
<td>10 QPSK FDC</td>
<td>Analog NTSC</td>
<td>-19 dB</td>
</tr>
<tr>
<td>11 QPSK FDC</td>
<td>64 QAM</td>
<td>-11 dB</td>
</tr>
<tr>
<td>12 QPSK FDC</td>
<td>256 QAM</td>
<td>-16 dB</td>
</tr>
<tr>
<td>13 Analog NTSC</td>
<td>Analog NTSC</td>
<td>-3 dB</td>
</tr>
<tr>
<td>14 64 QAM FAT</td>
<td>64 QAM</td>
<td>-6 dB</td>
</tr>
<tr>
<td>15 256 QAM FAT</td>
<td>256 QAM</td>
<td>-6 dB</td>
</tr>
<tr>
<td>16 QPSK FDC</td>
<td>QPSK FDC</td>
<td>-6 dB</td>
</tr>
</tbody>
</table>

- Independent of the D/U ratios, the C/(N+I) and the absolute signal levels shall meet the requirements for those parameters as described elsewhere in the specification.
- Good engineering practice normally requires that only a single FDC channel be adjacent to a FAT channel.

The Worst Case D/U Ratio (Desired-to-Undesired carrier level Ratio) in Table 6 is derived from the Table 5 nominal levels and the Section 6.4.1.1 requirement that individual signals to be within ±3 dB of those levels. This ratio occurs when a desired carrier is -3 dB with respect to the minimum level allowed by Table 5 and the undesired carrier is +3 dB with respect to the maximum level allowed by Table 5.

For example, line 1 in Table 6 refers to a worst case condition where a desired analog NTSC signal has 2 dB more power than an adjacent undesired 64 QAM carrier. This occurs when the desired analog NTSC signal variation is -3 dB with respect to the Table 5 analog NTSC reference level of 0 dB. The undesired 64 QAM signal variation is +3 dB above the -8 dB maximum allowed Nominal Relative Carrier Power Level in the range specified for 64 QAM in Table 5. This results in a worst case level of -5 dB with respect to the reference level. The D/U ratio is therefore -3 dB minus -5 dB = +2 dB D/U ratio.
The worst case analog NTSC into analog NTSC D/U ratio in Table 6, line 13 is limited to -3 dB by the FCC rule referenced in Section 6.4.1.1.

6.4.1.3 Limits for Digital Signals

Independent of meeting the requirements specified in sections 6.4.1.1 and 6.4.1.2 above, the level of digital signals shall fall within the ranges specified in Table 4 (QAM FAT), Table 2.5 and Table 2.6 (QPSK FDC) measured at the input to the terminal device. These absolute carrier level ranges are the only parameters that limit individual carrier levels across the 54 to 1002 MHz frequency band.

7.0 TRANSPORT LAYER PROTOCOLS

7.1 Forward Application Transport (FAT) Channels

The MPEG-2 Transport Stream protocol, defined in ISO/IEC 13818-1 MPEG-2 Systems[14], shall be used as the Transport Layer of the FAT channels. The protocols and messages defined in this layer are used to transport a variety of digital services, including digital audio-visual services, digital multi-media services, and information services.

The protocol stack of MPEG-based services is shown in Figure 5. The digital multiplex and transport system is defined in ANSI/SCTE 54[4]. It is a compatible subset of the MPEG-2 Systems specification defined in ISO/IEC 13818-1.

The overall system multiplexing approach is a combination of multiplexing at two different layers. In the first layer, single program Transport Streams are formed by multiplexing Transport Stream (TS) packets from one or more Packetized Elementary Stream (PES) sources. In the second layer, many single program Transport Streams are combined to form a multi-program Transport Stream. The multi-program stream includes Program Specific Information (PSI) that identifies each program and its components.

In addition to MPEG-2 Video, AC-3 Audio, System Tables and other System Information, MPEG-2 Transport packets are used to carry other services and information. The MPEG-2 Transport layer allows new ancillary services to be added to the basic service at any time in the future. The transport and other protocol layers for these additional services and information are currently undefined.
7.2 Out-of-Band Forward Data Channels (FDC)

The out-of-band forward data channels are defined above in Section 6.3.3 and Figure 3. The out-of-band forward data channels are used for control and access messages, application code download, electronic program guide data and other data services as applicable.

Transport layer protocols for out-of-band forward channels are defined in ANSI/SCTE 55-2 and ANSI/SCTE 55-1.

7.3 Out-of-Band Reverse Data Channels (RDC)

When present, the RDC channels are as defined above in 6.3.4 and Figure 4. The out-of-band reverse channels carry traffic from the terminal device to the headend equipment. The RDCs utilize IP packets with ATM AAL5 to transport information.

8.0 SERVICES AND RELATED PROTOCOL STACKS

In this section service and related protocol stacks are defined. Figure 6 and Figure 7 show the inter-relations among the service channels, logic interfaces and applications.
Figure 6 Interrelation of Service Channels, Logic Interfaces and Applications for Scrambled Programming
8.1 Audio-Visual Services

Audio-Visual services are provided on either or both the analog channels and the FAT channels. These services include analog and digital broadcast, on-demand services, premium, tiered, and other video services.

8.1.1 Analog Audio-Visual Services

Analog video and audio are provided in accordance with current cable-system practice and applicable FCC rules. Along with the analog service, data may be sent in the NTSC Vertical Blanking Interval (VBI) lines (See Section 8.1.3 below) that are then processed by the terminal device in compliance with FCC Rules 47 CFR Section 15.119. The demodulated NTSC signal is the Composite signal defined in SMPTE-170M [26].

8.1.2 Digital Audio-Visual Services

Digital Audio-Visual services are provided as either MPEG-2 compressed video (ISO/IEC 13818-2[1]), AVC/H.264 compressed video as constrained by ANSI/SCTE 128[19], or VC-1 compressed video as constrained by ANSI/SCTE 157[20] and AC-3 audio (ATSC
A/52 as constrained by ATSC A/53 Parts 3 and 5[10]). A modified protocol stack for both analog and digital Audio-Visual services is shown in Figure 8. The video formats are those specified in ANSI/SCTE 43[3] for MPEG-2, ANSI/SCTE 128[19] for AVC/H.264 and SCTE 157[20] for VC-1. The constraints and extensions that apply to video are specified in ANSI/SCTE 43[3], ANSI/SCTE 128[19] or SCTE 157[20]. When audio is present, ANSI/SCTE 54[4] requires at least one Complete Main audio service to be present.

<table>
<thead>
<tr>
<th>Video</th>
<th>VBI Data</th>
<th>Stereo /Mono /Pro-logic</th>
<th>Video</th>
<th>Audio</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Video Baseband Signal</td>
<td>Audio Baseband Signal</td>
<td></td>
<td>PES packet</td>
<td>Conditional Access</td>
<td></td>
</tr>
<tr>
<td>NTSC Baseband</td>
<td></td>
<td></td>
<td>MPEG-2 TS</td>
<td>64/256 QAM Baseband Signal</td>
<td></td>
</tr>
<tr>
<td>NTSC/AM-VSB IF</td>
<td></td>
<td></td>
<td>64/256 QAM/IF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6-MHz RF Signal (CEA-542-C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8 Modified Protocol Stack for Audio-Visual Services

8.1.3 VBI Services

VBI signals are found on lines 10 through 20 of the analog waveform, with closed captioning signals found on line 21. Field 1, Field 2, or both may carry VBI signals. Certain VBI services have been standardized by SCTE for carriage within a digital television system. VBI services are documented by ANSI/SCTE 127[18].

8.2 Data Services

Broadcast data services may be provided via FAT channels and out-of-band FDCs. Standards for data services are beyond the scope of this document.

8.3 In-Band Service/System Information

When system information is provided with transport streams containing one or more unscrambled programs, that data shall be formatted as defined in Section 5.7.1 of ANSI/SCTE 54[4].
8.4 Out-of-Band Service/System Information

When one or more scrambled services are offered on the cable system, System and Service Information for those services is carried to each POD (CableCARD™) module deployed by the cable operator for all services for which the POD module has entitlements. System and Service Information is carried in an out-of-band Forward Data Channel, as defined in section 6.3.3 above, using the formats described in ANSI/SCTE 65[7] or through an application appropriate to the terminal device. Nothing in this standard precludes the use of other modes for providing service information to products that include features or functions needed to support interactive services. This information is carried in MPEG-2 private sections mapped into either MPEG-TS packets in ANSI/SCTE 55-1 or IP/AAL5 packets in ANSI/SCTE 55-2. Figure 9 shows the protocol stack for Service/System Information.

It is the responsibility of the POD module to provide System and Service Information across the HOST-POD interface in Extended Channel data flows, using Service_type MPEG_section, as defined in ANSI/SCTE 65 or for the appropriate application to present the service information. The System and Service Information provided shall conform to one or more of the profiles specified in ANSI/SCTE 65.

<table>
<thead>
<tr>
<th>ANSI/SCTE 55-2</th>
<th>ANSI/SCTE 55-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOB-SI</td>
<td>OOB-SI</td>
</tr>
<tr>
<td>ANSI/SCTE 65</td>
<td>ANSI/SCTE 65</td>
</tr>
<tr>
<td>MPEG-2 private section</td>
<td>MPEG-2 private section</td>
</tr>
<tr>
<td>AAL5</td>
<td>AAL5</td>
</tr>
<tr>
<td>ATM cell Format</td>
<td>MPEG-2 TS</td>
</tr>
<tr>
<td>ANSI/SCTE 55-2 PHY</td>
<td>ANSI/SCTE 55-1 PHY</td>
</tr>
</tbody>
</table>

Figure 9 Protocol Stack for Out-of-Band Service/System Information

8.5 Emergency Alert System (EAS)

Emergency Alert System (EAS) is used to alert viewers of incoming emergency messages. The origination of these emergency alert messages could be from a variety of sources: National, State or Local government, and etc. Emergency alert messages may be conveyed to a viewer by means of a textual overlay on the TV screen or via audio announcements that may pre-empt the audio source of a normal broadcast program or by other means at the discretion of the operator and without impact to the receiver.
The EAS message syntax is compatible with MPEG-2 transport and is defined in ANSI/SCTE 18[8]. When present on inband transmission, messages conforming to ANSI/SCTE 18 shall appear in transport packet with the same PID that is used for Service/System Information (SI). The table ID for the EAS message is 0xD8 as defined in ANSI/SCTE 18. The protocol stack is shown in Figure 10. When present on out-of-band (OOB) transmission, the EAS message shall be transmitted according to ANSI/SCTE 18.

<table>
<thead>
<tr>
<th>EAS (ANSI/SCTE 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPEG-2 Private Section</td>
</tr>
<tr>
<td>MPEG-2 TS</td>
</tr>
</tbody>
</table>

Figure 10 Protocol Stack for Inband EAS

8.6 Closed Captioning

Closed captioning data is associated with the video program and encoded by the program provider. The cable network shall deliver these signals, when available, as specified in the following sub-paragraphs.

8.6.1 Analog Television Programs

For analog television programs, the encoding of the closed captioning data shall be in accordance with FCC Rules 47 CFR Section 15.119 and CEA-608[13]. For NTSC, closed captioning data, when present, is carried in line 21 of the vertical blanking interval (VBI).

8.6.2 Digital Television Programs

For digital television programs, when closed captioning data is provided, it shall be provided in accordance with ANSI/SCTE 43[3]. Changes to closed captioning encoding and transport format may occur at any time within a given service.

The caption service descriptor is carried according to ANSI/SCTE 54 [6].

8.7 Digital Television (DTV) Content Advisory Information

The content advisory descriptor, when present, shall be carried according to section 5.8.3.7 of ANSI/SCTE 54[4].