IPCablecom 1.0 Part 6: Management Information Base (MIB) Framework
NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards and Operational Practices (hereafter called “documents”) are intended to serve the public interest by providing specifications, test methods and procedures that promote uniformity of product, interoperability, interchangeability, best practices, and the long term reliability of broadband communications facilities. These documents shall not in any way preclude any member or non-member of SCTE from manufacturing or selling products not conforming to such documents, nor shall the existence of such standards preclude their voluntary use by those other than SCTE members.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the documents. Such adopting party assumes all risks associated with adoption of these documents and accepts full responsibility for any damage and/or claims arising from the adoption of such documents.

NOTE: The user’s attention is called to the possibility that compliance with this document may require the use of an invention covered by patent rights. By publication of this document, no position is taken with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from the standards developer. SCTE shall not be responsible for identifying patents for which a license may be required or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of this document have been requested to provide information about those patents and any related licensing terms and conditions. Any such declarations made before or after publication of this document are available on the SCTE web site at https://scte.org.

All Rights Reserved
©2021 Society of Cable Telecommunications Engineers, Inc.
140 Philips Road
Exton, PA 19341

Note: DOCSIS® is a registered trademark of Cable Television Laboratories, Inc., and is used in this document with permission.
Document Types and Tags

Document Type: Specification
Document Tags:
☐ Test or Measurement ☐ Checklist
☒ Architecture or Framework ☐ Metric
☐ Procedure, Process or Method ☒ Access Network
☐ Cloud
☐ Facility
☐ Customer Premises

Document Release History

<table>
<thead>
<tr>
<th>Release</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCTE 24-6 2001</td>
<td>3/28/2001</td>
</tr>
<tr>
<td>SCTE 24-6 2004</td>
<td>7/23/2004</td>
</tr>
<tr>
<td>SCTE 24-6 2006</td>
<td>5/19/2006</td>
</tr>
<tr>
<td>SCTE 24-6 2009</td>
<td>6/5/2009</td>
</tr>
<tr>
<td>SCTE 24-6 2016</td>
<td>10/7/2016</td>
</tr>
</tbody>
</table>

Note: This document is a reaffirmation of SCTE 24-6 2016. No substantive changes have been made to this document. Information components may have been updated such as the title page, NOTICE text, headers, and footers.
Table of Contents

1 INTRODUCTION ... 6
 1.1 PURPOSE .. 6
 1.2 REQUIREMENTS AND CONVENTIONS ... 6

2 REFERENCES (NORMATIVE) .. 7

3 TERMS AND DEFINITIONS .. 8

4 ABBREVIATIONS AND ACRONYMS .. 12

5 OVERVIEW ... 19
 5.1 IPCABLECOM REFERENCE ARCHITECTURE .. 19
 5.2 GENERAL REQUIREMENTS ... 19
 5.2.1 Provisioning and Network Management Service Provider .. 20
 5.2.2 Support for Embedded and Standalone MTAs .. 20
 5.2.3 SNMP Considerations .. 21
 5.3 FUNCTIONAL REQUIREMENTS ... 23
 5.3.1 IPCablecom Device Provisioning .. 23
 5.3.2 Security .. 23
 5.3.3 Voice interfaces ... 23
 5.3.4 Packet Voice Call Signaling .. 23
 5.3.5 Media Packet Transport ... 24
 5.3.6 Fault Management .. 24
 5.3.7 Performance Management .. 24

6 MIB MODULES AVAILABLE IN AN IPCABLECOM NETWORK .. 25
 6.1 DOCSIS MIB MODULES .. 25
 6.2 IF MIB ... 25
 6.3 MIB II ... 25
 6.3.1 sysDescr Requirements .. 25
 6.3.2 sysObjectID Requirements .. 25
 6.3.3 “iftable” Requirements .. 26
 6.4 ETHERNET MIB .. 27
 6.5 IPCABLECOM SIGNALING MIB .. 28
 6.5.1 MTA SIGNALING MIB General Configuration Information .. 28
 6.5.2 MTA NCS MIB per Endpoint Data ... 28
 6.6 IPCABLECOM MTA MIB MODULE .. 28

7 IPCABLECOM MIB MODULE IMPLEMENTATION .. 29
 7.1 MTA COMPONENTS ... 29
 7.2 MIB LAYERING .. 30

APPENDIX I BIBLIOGRAPHY (INFORMATIVE) .. 31
List of Figures

FIGURE 1. IPCABLECOM REFERENCE ARCHITECTURE ... 19
FIGURE 2. PARTITIONING OF MANAGEMENT DOMAINS ... 20
FIGURE 3. EMBEDDED AND STANDALONE MTA IMPLEMENTATIONS 21
FIGURE 4. MTA COMPONENTS .. 29
FIGURE 5. MIB LAYERING MODEL .. 30

List of Tables

TABLE 1. FUNCTIONAL MIB AREAS .. 6
TABLE 2. MIB MODULES IMPLEMENTED BY E-MTA AND S-MTA .. 25
TABLE 3. RFC 2863 IF-TABLE, MIB-OBJECT DETAILS FOR EMBEDDED MTA DEVICE INTERFACES .. 26
TABLE 4. RFC 2011 IPNETTOMEDIA MIB-OBJECT DETAILS FOR EMTA DEVICE INTERFACES .. 27
1 INTRODUCTION

1.1 Purpose

This standard describes the framework in which IPCablecom MIB (Management Information Base) modules are described. It provides information on the management requirements of IPCablecom compliant devices and functions and how these requirements are supported in the MIB modules. It is intended to support and complement the actual MIB module documents, which are issued separately.

This document addresses some aspects of the voice communications capabilities of an IPCablecom network. The legal/regulatory classification of IP-based voice communications provided over cable networks and otherwise, and the legal/regulatory obligations, if any, borne by providers of such voice communications, are not yet fully defined by appropriate legal and regulatory authorities. Nothing in this specification is addressed to, or intended to affect, those issues. In particular, while this document uses standard terms such as "call," "call signaling," "telephony," etc., it will be evident from this document that while a Packet-Cable network performs activities analogous to these PSTN functions, the manner by which it does so differs considerably from the manner in which they are performed in the PSTN by telecommunications carriers. These differences may be significant for legal/regulatory purposes.

Table 1. Functional MIB Areas

<table>
<thead>
<tr>
<th>IPCablecom Specification</th>
<th>Phase</th>
<th>MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS Protocol</td>
<td>1.0</td>
<td>Signaling MIB</td>
</tr>
<tr>
<td>MTA Device Provisioning</td>
<td>1.0</td>
<td>MTA MIB</td>
</tr>
<tr>
<td>Codec</td>
<td>1.0</td>
<td>Signaling MIB</td>
</tr>
<tr>
<td>Security</td>
<td>1.0</td>
<td>MTA MIB</td>
</tr>
</tbody>
</table>

1.2 Requirements and Conventions

Throughout this document, the words that are used to define the significance of particular requirements are capitalized. These words are:

“MUST” This word or the adjective “REQUIRED” means that the item is an absolute requirement of this specification.

“MUST NOT” This phrase means that the item is an absolute prohibition of this specification.

“SHOULD” This word or the adjective “RECOMMENDED” means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighed before choosing a different course.

“SHOULD NOT” This phrase means that there may exist valid reasons in particular circumstances when the listed behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

“MAY” This word or the adjective “OPTIONAL” means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.
2 REFERENCES (NORMATIVE)

The following documents contain provisions which, through reference in this text, constitute provisions of this standard. At the time of Subcommittee approval, the editions indicated were valid. All documents are subject to revision, and while parties to agreement based on this standard are encouraged to investigate the possibility of applying the most recent editions of the documents listed below, they are reminded that newer editions of those documents might not be compatible with the referenced version.

3 TERMS AND DEFINITIONS

The following is a master list terms and definitions used by IPCablecom 1.0:

Access Control
Limiting the flow of information from the resources of a system only to authorized persons, programs, processes, or other system resources on a network.

Active
A service flow is said to be "active" when it is permitted to forward data packets. A service flow must first be admitted before it is active.

Admitted
A service flow is said to be "admitted" when the CMTS has reserved resources (e.g., bandwidth) for it on the DOCSIS network.

A-link
A-Links are SS7 links that interconnect STPs and either SSPs or SCPs. ‘A’ stands for "Access."

Asymmetric Key
An encryption key or a decryption key used in public key cryptography, where encryption and decryption keys are always distinct.

Audio Server
An Audio Server plays informational announcements in IPCablecom network. Media announcements are needed for communications that do not complete and to provide enhanced information services to the user. The component parts of Audio Server services are Media Players and Media Player Controllers.

Authentication
The process of verifying the claimed identity of an entity to another entity.

Authenticity
The ability to ensure that the given information is without modification or forgery and was in fact produced by the entity that claims to have given the information.

Authorization
The act of giving access to a service or device if one has permission to have the access.

Cipher
An algorithm that transforms data between plaintext and ciphertext.

Ciphersuite
A set which must contain both an encryption algorithm and a message authentication algorithm (e.g., a MAC or an HMAC). In general, it may also contain a key-management algorithm, which does not apply in the context of IPCablecom.

Ciphertext
The (encrypted) message output from a cryptographic algorithm that is in a format that is unintelligible.

Cleartext
The original (unencrypted) state of a message or data. Also called plaintext.

Confidentiality
A way to ensure that information is not disclosed to anyone other than the intended parties. Information is encrypted to provide confidentiality. Also known as privacy.

Cryptanalysis
The process of recovering the plaintext of a message or the encryption key without access to the key.

Cryptographic algorithm
An algorithm used to transfer text between plaintext and ciphertext.

Decipherment
A procedure applied to ciphertext to translate it into plaintext.

Decryption
A procedure applied to ciphertext to translate it into plaintext.

Decryption key
The key in the cryptographic algorithm to translate the ciphertext to plaintext.

Digital certificate
A binding between an entity’s public key and one or more attributes relating to its identity, also known as a public key certificate.

Digital signature
A data value generated by a public-key algorithm based on the contents of a block of data and a private key, yielding an individualized cryptographic checksum.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream</td>
<td>The direction from the headend toward the subscriber location.</td>
</tr>
<tr>
<td>Encipherment</td>
<td>A method used to translate plaintext into ciphertext.</td>
</tr>
<tr>
<td>Encryption</td>
<td>A method used to translate plaintext into ciphertext.</td>
</tr>
<tr>
<td>Encryption Key</td>
<td>The key used in a cryptographic algorithm to translate the plaintext to ciphertext.</td>
</tr>
<tr>
<td>Endpoint</td>
<td>A Terminal, Gateway or Multipoint Conference Unit (MCU).</td>
</tr>
<tr>
<td>Errored Second</td>
<td>Any 1-second interval containing at least one bit error.</td>
</tr>
<tr>
<td>Event Message</td>
<td>A message capturing a single portion of a connection.</td>
</tr>
<tr>
<td>F-link</td>
<td>F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. ‘F’ stands for "Fully Associated."</td>
</tr>
<tr>
<td>Flow [DOCSIS Flow]</td>
<td>(a.k.a. DOCSIS-QoS "service flow") A unidirectional sequence of packets associated with a Service ID (SID) and a QoS. Multiple multimedia streams may be carried in a single DOCSIS Flow.</td>
</tr>
<tr>
<td>Flow [IP Flow]</td>
<td>A unidirectional sequence of packets identified by OSI Layer 3 and Layer 4 header information. This information includes source/destination IP addresses, source/destination port numbers, protocol ID. Multiple multimedia streams may be carried in a single IP Flow.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Devices bridging between the IPCablecom IP Voice Communication world and the PSTN. Examples are the Media Gateway, which provides the bearer circuit interfaces to the PSTN and transcodes the media stream, and the Signaling Gateway, which sends and receives circuit switched network signaling to the edge of the IPCablecom network.</td>
</tr>
<tr>
<td>H.323</td>
<td>An ITU-T recommendation for transmitting and controlling audio and video information. The H.323 recommendation requires the use of the ITU-T H.225 and ITU-T H.245 protocol for communication control between a "gateway" audio/video endpoint and a "gatekeeper" function.</td>
</tr>
<tr>
<td>Header</td>
<td>Protocol control information located at the beginning of a protocol data unit.</td>
</tr>
<tr>
<td>Integrity</td>
<td>A way to ensure that information is not modified except by those who are authorized to do so.</td>
</tr>
<tr>
<td>IntraLATA</td>
<td>Within a Local Access Transport Area.</td>
</tr>
<tr>
<td>Jitter</td>
<td>Variability in the delay of a stream of incoming packets making up a flow such as a voice communication.</td>
</tr>
<tr>
<td>Kerberos</td>
<td>A secret-key network authentication protocol that uses a choice of cryptographic algorithms for encryption and a centralized key database for authentication.</td>
</tr>
<tr>
<td>Key</td>
<td>A mathematical value input into the selected cryptographic algorithm.</td>
</tr>
<tr>
<td>Key Exchange</td>
<td>The swapping of public keys between entities to be used to encrypt communication between the entities.</td>
</tr>
<tr>
<td>Key Management</td>
<td>The process of distributing shared symmetric keys needed to run a security protocol.</td>
</tr>
<tr>
<td>Key Pair</td>
<td>An associated public and private key where the correspondence between the two are mathematically related, but it is computationally infeasible to derive the private key from the public key.</td>
</tr>
<tr>
<td>Keying Material</td>
<td>A set of cryptographic keys and their associated parameters, normally associated with a particular run of a security protocol.</td>
</tr>
<tr>
<td>Keypoint</td>
<td>The range of all possible values of the key for a particular cryptographic algorithm.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Latency</td>
<td>The time, expressed in quantity of symbols, taken for a signal element to pass through a device.</td>
</tr>
<tr>
<td>Link Encryption</td>
<td>Cryptography applied to data as it travels on data links between the network devices.</td>
</tr>
<tr>
<td>Network Layer</td>
<td>Layer 3 in the Open System Interconnection (OSI) architecture that provides network information that is independent from the lower layers.</td>
</tr>
<tr>
<td>Network Management</td>
<td>The functions related to the management of data across the network.</td>
</tr>
<tr>
<td>Network Management OSS</td>
<td>The functions related to the management of data link layer and physical layer resources and their stations across the data network supported by the hybrid fiber/coax system.</td>
</tr>
<tr>
<td>Nonce</td>
<td>A random value used only once that is sent in a communications protocol exchange to prevent replay attacks.</td>
</tr>
<tr>
<td>Non-Repudiation</td>
<td>The ability to prevent a sender from denying later that he or she sent a message or performed an action.</td>
</tr>
<tr>
<td>Off-Net Call</td>
<td>A communication connecting an IPCablecom subscriber out to a user on the PSTN.</td>
</tr>
<tr>
<td>On-Net Call</td>
<td>A communication placed by one customer to another customer entirely on the IPCablecom Network.</td>
</tr>
<tr>
<td>One-way Hash</td>
<td>A hash function that has an insignificant number of collisions upon output.</td>
</tr>
<tr>
<td>Plaintext</td>
<td>The original (unencrypted) state of a message or data. Also called cleartext.</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>A shared secret key passed to both parties in a communication flow, using an unspecified manual or out-of-band mechanism.</td>
</tr>
<tr>
<td>Privacy</td>
<td>A way to ensure that information is not disclosed to anyone other than the intended parties. Information is usually encrypted to provide confidentiality. Also known as confidentiality.</td>
</tr>
<tr>
<td>Private Key</td>
<td>The key used in public key cryptography that belongs to an individual entity and must be kept secret.</td>
</tr>
<tr>
<td>Proxy</td>
<td>A facility that indirectly provides some service or acts as a representative in delivering information, thereby eliminating the need for a host to support the service.</td>
</tr>
<tr>
<td>Public Key</td>
<td>The key used in public key cryptography that belongs to an individual entity and is distributed publicly. Other entities use this key to encrypt data to be sent to the owner of the key.</td>
</tr>
<tr>
<td>Public Key Certificate</td>
<td>A binding between an entity’s public key and one or more attributes relating to its identity, also known as a digital certificate.</td>
</tr>
<tr>
<td>Public Key Cryptography</td>
<td>A procedure that uses a pair of keys, a public key and a private key, for encryption and decryption, also known as an asymmetric algorithm. A user’s public key is publicly available for others to use to send a message to the owner of the key. A user’s private key is kept secret and is the only key that can decrypt messages sent encrypted by the user’s public key.</td>
</tr>
<tr>
<td>Root Private Key</td>
<td>The private signing key of the highest-level Certification Authority. It is normally used to sign public key certificates for lower-level Certification Authorities or other entities.</td>
</tr>
<tr>
<td>Root Public Key</td>
<td>The public key of the highest level Certification Authority, normally used to verify digital signatures generated with the corresponding root private key.</td>
</tr>
<tr>
<td>Secret Key</td>
<td>The cryptographic key used in a symmetric key algorithm, which results in the secrecy of the encrypted data depending solely upon keeping the key a secret, also known as a symmetric key.</td>
</tr>
</tbody>
</table>
Session Key
A cryptographic key intended to encrypt data for a limited period of time, typically between a pair of entities.

Signed and Sealed
An "envelope" of information which has been signed with a digital signature and sealed using encryption.

Subflow
A unidirectional flow of IP packets characterized by a single source and destination IP address and single source and destination UDP/TCP port.

Symmetric Key
The cryptographic key used in a symmetric key algorithm, which results in the secrecy of the encrypted data depending solely upon keeping the key a secret, also known as a secret key.

Systems Management
Functions in the application layer related to the management of various Open Systems Interconnection (OSI) resources and their status across all layers of the OSI architecture.

Transit Delays
The time difference between the instant at which the first bit of a Protocol Data Unit (PDU) crosses one designated boundary, and the instant at which the last bit of the same PDU crosses a second designated boundary.

Trunk
An analog or digital connection from a circuit switch that carries user media content and may carry voice signaling (Mf, R2, etc.).

Tunnel Mode
An IPsec (ESP or AH) mode that is applied to an IP tunnel, where an outer IP packet header (of an intermediate destination) is added on top of the original, inner IP header. In this case, the ESP or AH transform treats the inner IP header as if it were part of the packet payload. When the packet reaches the intermediate destination, the tunnel terminates and both the outer IP packet header and the IPsec ESP or AH transform are taken out.

Upstream
The direction from the subscriber location toward the headend.

X.509 certificate
A public key certificate specification developed as part of the ITU-T X.500 standards directory.
4 ABBREVIATIONS AND ACRONYMS

The following is a master list of abbreviations for IPCablecom 1.0:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Authentication, Authorization and Accounting.</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard. A block cipher, used to encrypt the media traffic in IPCablecom.</td>
</tr>
<tr>
<td>AF</td>
<td>Assured Forwarding. This is a DiffServ Per Hop Behavior.</td>
</tr>
<tr>
<td>AH</td>
<td>Authentication header. An IPsec security protocol that provides message integrity for complete IP packets, including the IP header.</td>
</tr>
<tr>
<td>AMA</td>
<td>Automated Message Accounting. A standard form of call detail records (CDRs) developed and administered by Bellcore (now Telcordia Technologies).</td>
</tr>
<tr>
<td>ASD</td>
<td>Application-Specific Data. A field in some Kerberos key management messages that carries information specific to the security protocol for which the keys are being negotiated.</td>
</tr>
<tr>
<td>AT</td>
<td>Access Tandem.</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode. A protocol for the transmission of a variety of digital signals using uniform 53-byte cells.</td>
</tr>
<tr>
<td>BAF</td>
<td>Bellcore AMA Format, also known as AMA.</td>
</tr>
<tr>
<td>BCID</td>
<td>Billing Correlation ID.</td>
</tr>
<tr>
<td>BPI+</td>
<td>Baseline Privacy Plus Interface Specification. The security portion of the DOCSIS 1.1 standard that runs on the MAC layer.</td>
</tr>
<tr>
<td>CA</td>
<td>Certification Authority. A trusted organization that accepts certificate applications from entities, authenticates applications, issues certificates and maintains status information about certificates.</td>
</tr>
<tr>
<td>CA</td>
<td>Call Agent. The part of the CMS that maintains the communication state, and controls the line side of the communication.</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining mode. An option in block ciphers that combine (XOR) the previous block of ciphertext with the current block of plaintext before encrypting that block of the message.</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant Bit Rate.</td>
</tr>
<tr>
<td>CDR</td>
<td>Call Detail Record. A single CDR is generated at the end of each billable activity. A single billable activity may also generate multiple CDRs.</td>
</tr>
<tr>
<td>CIC</td>
<td>Circuit Identification Code. In ANSI SS7, a two-octet number that uniquely identifies a DSO circuit within the scope of a single SS7 Point Code.</td>
</tr>
<tr>
<td>CID</td>
<td>Circuit ID (Pronounced "kid"). This uniquely identifies an ISUP DS0 circuit on a Media Gateway. It is a combination of the circuit’s SS7 gateway point code and Circuit Identification Code (CIC). The SS7 DPC is associated with the Signaling Gateway that has domain over the circuit in question.</td>
</tr>
<tr>
<td>CIF</td>
<td>Common Intermediate Format.</td>
</tr>
<tr>
<td>CIR</td>
<td>Committed Information Rate.</td>
</tr>
<tr>
<td>CM</td>
<td>DOCSIS Cable Modem.</td>
</tr>
<tr>
<td>CMS</td>
<td>Cryptographic Message Syntax.</td>
</tr>
<tr>
<td>CMS</td>
<td>Call Management Server. Controls the audio connections. Also called a Call Agent in MGCP/SGCP terminology. This is one example of an Application Server.</td>
</tr>
<tr>
<td>CMTS</td>
<td>Cable Modem Termination System. The device at a cable headend which implements the DOCSIS RFI MAC protocol and connects to CMs over an HFC network.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>CMSS</td>
<td>Call Management Server Signaling.</td>
</tr>
<tr>
<td>Codec</td>
<td>COder-DECoder.</td>
</tr>
<tr>
<td>CoS</td>
<td>Class of Service. The type 4 tuple of a DOCSIS configuration file.</td>
</tr>
<tr>
<td>CRCX</td>
<td>Create Connection.</td>
</tr>
<tr>
<td>CSR</td>
<td>Customer Service Representative.</td>
</tr>
<tr>
<td>DA</td>
<td>Directory Assistance.</td>
</tr>
<tr>
<td>DE</td>
<td>Default. This is a DiffServ Per Hop Behavior.</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard.</td>
</tr>
<tr>
<td>DF</td>
<td>Delivery Function.</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol.</td>
</tr>
<tr>
<td>DHCP-D</td>
<td>DHCP Default. Network Provider DHCP Server.</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service.</td>
</tr>
<tr>
<td>DOCSIS®</td>
<td>Data-Over-Cable Service Interface Specifications.</td>
</tr>
<tr>
<td>DPC</td>
<td>Destination Point Code. In ANSI SS7, a 3-octet number which uniquely identifies an SS7 Signaling Point, either an SSP, STP, or SCP.</td>
</tr>
<tr>
<td>DQoS</td>
<td>Dynamic Quality-of-Service. Assigned on the fly for each communication depending on the QoS requested.</td>
</tr>
<tr>
<td>DSA</td>
<td>Dynamic Service Add.</td>
</tr>
<tr>
<td>DSC</td>
<td>Dynamic Service Change.</td>
</tr>
<tr>
<td>DSCP</td>
<td>DiffServ Code Point. A field in every IP packet that identifies the DiffServ Per Hop Behavior. In IP version 4, the TOS byte is redefined to be the DSCP. In IP version 6, the Traffic Class octet is used as the DSCP.</td>
</tr>
<tr>
<td>DTMF</td>
<td>Dual-tone Multi Frequency (tones).</td>
</tr>
<tr>
<td>EF</td>
<td>Expedited Forwarding. A DiffServ Per Hop Behavior.</td>
</tr>
<tr>
<td>E-MTA</td>
<td>Embedded MTA. A single node that contains both an MTA and a cable modem.</td>
</tr>
<tr>
<td>EO</td>
<td>End Office.</td>
</tr>
<tr>
<td>ESP</td>
<td>IPsec Encapsulating Security Payload. Protocol that provides both IP packet encryption and optional message integrity, not covering the IP packet header.</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute.</td>
</tr>
<tr>
<td>F-link</td>
<td>F-Links are SS7 links that directly connect two SS7 end points, such as two SSPs. “F” stands for "Fully Associated."</td>
</tr>
<tr>
<td>FEID</td>
<td>Financial Entity ID.</td>
</tr>
<tr>
<td>FGD</td>
<td>Feature Group D signaling.</td>
</tr>
<tr>
<td>FQDN</td>
<td>Fully Qualified Domain Name. Refer to IETF RFC 2821 for details.</td>
</tr>
<tr>
<td>GC</td>
<td>Gate Controller.</td>
</tr>
<tr>
<td>GTT</td>
<td>Global Title Translation.</td>
</tr>
<tr>
<td>HFC</td>
<td>Hybrid Fiber/Coaxial. An HFC system is a broadband bi-directional shared media transmission system using fiber trunks between the headend and the fiber nodes, and coaxial distribution from the fiber nodes to the customer locations.</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hashed Message Authentication Code. A message authentication algorithm, based on either SHA-1 or MD5 hash and defined in IETF RFC 2104.</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol. Refer to IETF RFC 1945 and RFC 2068.</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbered Authority. See www.ietf.org for details.</td>
</tr>
</tbody>
</table>
IC Inter-exchange Carrier.

IETF Internet Engineering Task Force. A body responsible, among other things, for developing standards used on the Internet. See www.ietf.org for details.

IKE Internet Key Exchange. A key-management mechanism used to negotiate and derive keys for SAs in IPsec.

IKE– A notation defined to refer to the use of IKE with pre-shared keys for authentication.

IKE+ A notation defined to refer to the use of IKE with X.509 certificates for authentication.

IP Internet Protocol. An Internet network-layer protocol.

ISDN Integrated Services Digital Network.

ISTP Internet Signaling Transport Protocol.

ISUP ISDN User Part. A protocol within the SS7 suite of protocols that is used for call signaling within an SS7 network.

ITU International Telecommunication Union.

ITU-T International Telecommunication Union–Telecommunication Standardization Sector.

IVR Interactive Voice Response system.

KDC Key Distribution Center.

LATA Local Access and Transport Area.

LD Long Distance.

LIDB Line Information Database. Contains customer information required for real-time access such as calling card personal identification numbers (PINs) for real-time validation.

LLC Logical Link Control. The Ethernet Packet header and optional 802.1P tag which may encapsulate an IP packet. A sublayer of the Data Link Layer.

LNP Local Number Portability. Allows a customer to retain the same number when switching from one local service provider to another.

LSSGR LATA Switching Systems Generic Requirements.

MAC Message Authentication Code. A fixed-length data item that is sent together with a message to ensure integrity, also known as a MIC.

MAC Media Access Control. It is a sublayer of the Data Link Layer. It normally runs directly over the physical layer.

MC Multipoint Controller.

MCU Multipoint Conferencing Unit.

MD5 Message Digest 5. A one-way hash algorithm that maps variable length plaintext into fixed-length (16 byte) ciphertext.

MDCP Media Device Control Protocol. A media gateway control specification submitted to IETF by Lucent. Now called SCTP.

MDCX Modify Connection.

MDU Multi-Dwelling Unit. Multiple units within the same physical building. The term is usually associated with high-rise buildings.

MEGACO Media Gateway Control IETF working group. See www.ietf.org for details.

MF Multi-Frequency.

MG Media Gateway. Provides the bearer circuit interfaces to the PSTN and transcodes the media stream.
MGC | Media Gateway Controller. The overall controller function of the PSTN gateway. Receives, controls and mediates call-signaling information between the IPCablecom and PSTN.
MGCP | Media Gateway Control Protocol. Protocol follow-on to SGCP. Refer to IETF 2705.
MIB | Management Information Base.
MIC | Message Integrity Code. A fixed-length data item that is sent together with a message to ensure integrity, also known as a Message Authentication Code (MAC).
MMC | Multi-Point Mixing Controller. A conferencing device for mixing media streams of multiple connections.
MSB | Most Significant Bit.
MSO | Multi-System Operator. A cable company that operates many headend locations in several cities.
MSU | Message Signal Unit.
MTA | Multimedia Terminal Adapter. Contains the interface to a physical voice device, a network interface, CODECs, and all signaling and encapsulation functions required for VoIP transport, class features signaling, and QoS signaling.
MTP | The Message Transfer Part. A set of two protocols (MTP 2, MTP 3) within the SS7 suite of protocols that are used to implement physical, data link, and network-level transport facilities within an SS7 network.
MWD | Maximum Waiting Delay.
NANP | North American Numbering Plan.
NANPNAT | North American Numbering Plan Network Address Translation.
NAT Network Layer | Network Address Translation. Layer 3 in the Open System Interconnection (OSI) architecture. This layer provides services to establish a path between open systems.
NCS | Network Call Signaling.
NPA-NXX | Numbering Plan Area (more commonly known as area code) NXX (sometimes called exchange) represents the next three numbers of a traditional phone number. The N can be any number from 2-9 and the Xs can be any number. The combination of a phone number’s NPA-NXX will usually indicate the physical location of the call device. The exceptions include toll-free numbers and ported number (see LNP).
NTSC | National Television Standards Committee. Defines the analog color television broadcast standard used today in North America.
OID | Object Identification.
OSP | Operator Service Provider.
PAL | Phase Alternate Line. The European color television format that evolved from the American NTSC standard.
PCES | IPCablecom Electronic Surveillance.
PCM | Pulse Code Modulation. A commonly employed algorithm to digitize an analog signal (such as a human voice) into a digital bit stream using simple analog-to-digital conversion techniques.
PDU | Protocol Data Unit.
PHS Payload Header Suppression. A DOCSIS technique for compressing the Ethernet, IP, and UDP headers of RTP packets.

PKCROSS Public-Key Cryptography for Cross-Realm Authentication. Utilizes PKINIT for establishing the inter-realm keys and associated inter-realm policies to be applied in issuing cross-realm service tickets between realms and domains in support of Intradomain and Interdomain CMS-to-CMS signaling (CMSS).

PKCS Public-Key Cryptography Standards. Published by RSA Data Security Inc. These Standards describe how to use public key cryptography in a reliable, secure and interoperable way.

PKI Public-Key Infrastructure. A process for issuing public key certificates, which includes standards, Certification Authorities, communication between authorities and protocols for managing certification processes.

PKINIT Public-Key Cryptography for Initial Authentication. The extension to the Kerberos protocol that provides a method for using public-key cryptography during initial authentication.

PSC Payload Service Class Table, a MIB table that maps RTP payload Type to a Service Class Name.

PSFR Provisioned Service Flow Reference. An SFR that appears in the DOCSIS configuration file.

PSTN Public Switched Telephone Network.

QCIF Quarter Common Intermediate Format.

QoS Quality of Service. Guarantees network bandwidth and availability for applications.

RADIUS Remote Authentication Dial-In User Service. An internet protocol (IETF RFC 2865 and RFC 2866) originally designed for allowing users dial-in access to the internet through remote servers. Its flexible design has allowed it to be extended well beyond its original intended use.

RAS Registration, Admissions and Status. RAS Channel is an unreliable channel used to convey the RAS messages and bandwidth changes between two H.323 entities.

RC4 Rivest Cipher 4. A variable length stream cipher. Optionally used to encrypt the media traffic in IPCablecom.

RFI The DOCSIS Radio Frequency Interface specification.

RJ-11 Registered Jack-11. A standard 4-pin modular connector commonly used in the United States for connecting a phone unit into a wall jack.

RKS Record Keeping Server. The device, which collects and correlates the various Event Messages.

RSA A public-key, or asymmetric, cryptographic algorithm used to provide authentication and encryption services. RSA stands for the three inventors of the algorithm; Rivest, Shamir, Adleman.

RSA Key Pair A public/private key pair created for use with the RSA cryptographic algorithm.

RTCP Real-Time Control Protocol.

RTO Retransmission Timeout.

SA Security Association. A one-way relationship between sender and receiver offering security services on the communication flow.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAID</td>
<td>Security Association Identifier. Uniquely identifies SAs in the DOCSIS Baseline Privacy Plus Interface (BPI+) security protocol.</td>
</tr>
<tr>
<td>SCCP</td>
<td>Signaling Connection Control Part. A protocol within the SS7 suite of protocols that provides two functions in addition to those provided within MTP. The first function is the ability to address applications within a signaling point. The second function is Global Title Translation.</td>
</tr>
<tr>
<td>SCP</td>
<td>Service Control Point. A Signaling Point within the SS7 network, identifiable by a Destination Point Code that provides database services to the network.</td>
</tr>
<tr>
<td>SCTP</td>
<td>Stream Control Transmission Protocol.</td>
</tr>
<tr>
<td>SDP</td>
<td>Session Description Protocol.</td>
</tr>
<tr>
<td>SDU</td>
<td>Service Data Unit. Information delivered as a unit between peer service access points.</td>
</tr>
<tr>
<td>SF</td>
<td>Service Flow. A unidirectional flow of packets on the RF interface of a DOCSIS system.</td>
</tr>
<tr>
<td>SFID</td>
<td>Service Flow ID. A 32-bit integer assigned by the CMTS to each DOCSIS Service Flow defined within a DOCSIS RF MAC domain. SFIDs are considered to be in either the upstream direction (USFID) or downstream direction (DSFID). Upstream Service Flow IDs and Downstream Service Flow IDs are allocated from the same SFID number space.</td>
</tr>
<tr>
<td>SFR</td>
<td>Service Flow Reference. A 16-bit message element used within the DOCSIS TLV parameters of Configuration Files and Dynamic Service messages to temporarily identify a defined Service Flow. The CMTS assigns a permanent SFID to each SFR of a message.</td>
</tr>
<tr>
<td>SG</td>
<td>Signaling Gateway. An SG is a signaling agent that receives/sends SCN native signaling at the edge of the IP network. In particular, the SS7 SG function translates variants ISUP and TCAP in an SS7-Internet Gateway to a common version of ISUP and TCAP.</td>
</tr>
<tr>
<td>SGCP</td>
<td>Simple Gateway Control Protocol. Earlier draft of MGCP.</td>
</tr>
<tr>
<td>SHA – 1</td>
<td>Secure Hash Algorithm 1. A one-way hash algorithm.</td>
</tr>
<tr>
<td>SID</td>
<td>Service ID. A 14-bit number assigned by a CMTS to identify an upstream virtual circuit. Each SID separately requests and is granted the right to use upstream bandwidth.</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol. An application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants.</td>
</tr>
<tr>
<td>SIP+</td>
<td>Session Initiation Protocol Plus. An extension to SIP.</td>
</tr>
<tr>
<td>S-MTA</td>
<td>Standalone MTA. A single node that contains an MTA and a non-DOCSIS MAC (e.g., ethernet).</td>
</tr>
<tr>
<td>SOHO</td>
<td>Small Office/Home Office.</td>
</tr>
<tr>
<td>SS7</td>
<td>Signaling System number 7. An architecture and set of protocols for performing out-of-band call signaling with a telephone network.</td>
</tr>
<tr>
<td>SSP</td>
<td>Service Switching Point. SSPs are points within the SS7 network that terminate SS7 signaling links and also originate, terminate, or tandem switch calls.</td>
</tr>
<tr>
<td>STP</td>
<td>Signal Transfer Point. A node within an SS7 network that routes signaling messages based on their destination address. This is essentially a packet switch for SS7. It may also perform additional routing services such as Global Title Translation.</td>
</tr>
<tr>
<td>TCAP</td>
<td>Transaction Capabilities Application Protocol. A protocol within the SS7 stack that is used for performing remote database transactions with a Signaling Control Point.</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TD</td>
<td>Timeout for Disconnect.</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol.</td>
</tr>
<tr>
<td>TGS</td>
<td>Ticket Granting Server. A sub-system of the KDC used to grant Kerberos tickets.</td>
</tr>
<tr>
<td>TGW</td>
<td>Telephony Gateway.</td>
</tr>
<tr>
<td>TIPHON</td>
<td>Telecommunications and Internet Protocol Harmonization Over Network.</td>
</tr>
<tr>
<td>TLV</td>
<td>Type-Length-Value. A tuple within a DOCSIS configuration file.</td>
</tr>
<tr>
<td>TN</td>
<td>Telephone Number.</td>
</tr>
<tr>
<td>ToD</td>
<td>Time-of-Day Server.</td>
</tr>
<tr>
<td>TOS</td>
<td>Type of Service. An 8-bit field of every IP version 4 packet. In a DiffServ domain, the TOS byte is treated as the DiffServ Code Point, or DSCP.</td>
</tr>
<tr>
<td>TSG</td>
<td>Trunk Subgroup.</td>
</tr>
<tr>
<td>VAD</td>
<td>Voice Activity Detection.</td>
</tr>
<tr>
<td>VBR</td>
<td>Variable Bit Rate.</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice-over-IP.</td>
</tr>
</tbody>
</table>
5 OVERVIEW

IPCablecom MIB modules are designed to provide necessary functionality defined in IPCablecom specifications. The MIB design follows the same multi-phase schedule as the rest of IPCablecom specifications. MIB modules that are developed for IPCablecom 1.0 support Embedded-MTAs and in most cases Standalone MTAs, and provide definitions for call signaling and MTA device provisioning functions. Future IPCablecom development phases will include other functional areas as well as requirements for other IPCablecom components, which will be considered for MIB module development. Table 1 lists IPCablecom functional areas that are in the scope of IPCablecom 1.0.

5.1 IPCablecom Reference Architecture

The conceptual diagram for the IPCablecom architecture is shown in Figure 1. Please refer to the architecture document [1] for more detailed information concerning the IPCablecom architecture.

![Figure 1. IPCablecom Reference Architecture](image)

5.2 General Requirements

The IPCablecom MIBs Framework Specification follows the Internet Standard Management Framework described in RFC 3410 [19]. Additionally, the following requirements have been considered in the design of the IPCablecom MIB modules.

- IPCablecom 1.0 devices must be compliant with DOCSIS 1.1 or DOCSIS 2.0; therefore IPCablecom 1.0 devices MUST support DOCSIS 1.1 or DOCSIS 2.0 MIBs as defined in section 6.1 of this document.
- Take a minimalist approach for design of the IPCablecom MIB modules, i.e., if other MIB modules define the same functions, then rely on these MIB modules rather than create new ones.
- Organize MIB modules to support both Embedded and Standalone MTA. Note that IPCablecom 1.0 only requires Embedded MTA support.
- Organize MIB modules so as to allow functional partitioning of DOCSIS (high-speed data) and IPCablecom (voice) features.
- DOCSIS 1.1 or DOCSIS 2.0 within IPCablecom applications requires support of SNMPv3; therefore IPCablecom MIB agents MUST comply with SNMPv3.
- IPCablecom MIB modules MUST comply with SMIv2 as defined in IETF STD 58 [25].

In the following sections we will consider some of these requirements in detail.
5.2.1 Provisioning and Network Management Service Provider

A single physical device (e.g., embedded-MTA) will be completely provisioned and managed by a single business entity. In the case of multiple service providers offering different services on the same device (e.g., data by one provider, voice by another provider), a secondary service provider will act as the "contractor" for the primary provider in the areas of device provisioning and management.

Figure 2. Partitioning of Management Domains

5.2.2 Support for Embedded and Standalone MTAs

The IPCablecom MIB modules include features for both Embedded and Standalone MTAs. Since the MTAs (Embedded or Standalone) are not required to support any DOCSIS related functions, they MUST NOT share any MIB objects in common with DOCSIS. The IPCablecom MIB modules are, however, designed to provide management support for voice related functions. DOCSIS Cable Modems with Embedded MTAs must adhere to the DOCSIS or eDOCSIS specifications related to the MIBs. The CM part of the-E-MTA MUST support eDOCSIS requirements defined in [7].

Figure 3 describes the possible MIB module implementation for an MTA (Embedded or Standalone):
Section 5.2.3 SNMP Considerations

SNMPv3 provides an extended User Security Model, which implies changes to the way SNMP packets are exchanged between agents and managers. Since MIB modules are used to define the content of the packets, the changes for SNMPv3 do not affect MIB design.

IPCablecom MIB modules MUST conform to SMIv2 [25].

The following IETF RFCs provide more information on SNMPv3:

- IETF RFC 3410, Introduction and Applicability Statements for Internet Standard Management Framework [19],
- IETF RFC 3411, An Architecture for Describing Simple Network Management Protocol (SNMP) [20],
- IETF RFC 3412, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) [21],
- IETF RFC 3413, Simple Network Management Protocol (SNMP) Applications [22],
- IETF RFC 3414, User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3) [23],
- IETF RFC 3415, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) [24].
5.2.3.1 **USM Requirements**

For IPCablecom 1.0, the usmUserTable MUST be configured immediately after the AP Reply received from the Provisioning Server with the following entries.

- **usmUserEngineID** - the SNMP local engine id
- **usmUserCloneFrom** - 0.0
- **usmUserAuthProtocol** - usmHMACMD5AuthProtocol or usmHMACSHAAuthProtocol
- **usmUserAuthKeyChange** - ""
- **usmUserOwnAuthKeyChange** - ""
- **usmUserPrivProtocol** - usmDESPrivProtocol if privacy indicated in AP Reply, usmNoPrivProtocol if no privacy is indicated in the AP Reply.
- **UsmUserPrivKeyChange** - ""
- **UsmUserOwnPrivKeyChange** - ""
- **usmUserPublic** - ""
- **usmUserStorageType** - permanent
- **usmUserStatus** - active

The xx:xx:xx:xx:xx:xx in the usmUserName and usmUserSecurityName represents the MAC address of the MTA.

Initial authentication and privacy keys for this user are derived from the AP Reply message.

New users MAY be created by cloning as defined in SNMPv3. This MAY be done through the config file, or later through SNMP Set operations.

5.2.3.2 **VACM Requirements**

The following VACM entries MUST be defined for IPCablecom. Other table entries MAY be implemented at vendor or operator discretion.

VACM views MUST be defined for IPCablecom as described below.

5.2.3.2.1 **VacmSecurityToGroup Table**

The following configuration of the vacmSecurityToGroup table provides a read/write/create view.

- **vacmSecurityModel** - USM
- **vacmGroupName** - 'PacketCableFullAccess'
- **vacmSecurityToGroupStorageType** - permanent
- **vacmSecurityToGroupStatus** - active

5.2.3.2.2 **vacmAccessTable**

The vacmAccessTable MUST be configured with the following entries. Other table entries MAY be implemented at vendor or operator discretion.

5.2.3.2.2.1 Full Access

This configuration allows for read access of all MIB modules in the MTA, write access to IPCablecom MIB modules, and notifications as defined in the IPCablecom MIB modules:

- **vacmGroupName** - PacketCableFullAccess
- **vacmAccessContextPrefix** - ""
- **vacmAccessSecurityModel** - USM
- **vacmAccessSecurityLevel** - authPriv or authNoPriv, depending on whether privacy has been specified
- **vacmAccessContextMatch** - exact
- **vacmAccessReadViewName** - ReadOnlyView
- **vacmAccessWriteViewName** - FullAccessView
- **vacmAccessNotifyViewName** - NotifyView
- **vacmAccessStorageType** - permanent
5.2.3.2.3 MIB View Requirements

The FullAccessView MUST consist of the MIB2 system group, the IFMIB, and all IPCablecom defined MIB modules. It MAY include vendor defined MIBs, VACM, USM, and Notifications MIB. The following lists the required OIDs:

1.3.6.1.2.1.1 /* MIB-II system group MIB tree */
1.3.6.1.2.1.2.2 /* MIB-II IF MIB tree */
1.3.6.1.4.1.4491.2.2 /* PacketCable Project MIB tree */
1.3.6.1.6.3.13 /* NOTIFY MIB tree */
1.3.6.1.6.3.15 /* USM MIB tree */
1.3.6.1.6.3.16 /* VACM MIB tree */

The ReadOnlyView MUST consist of the entire MIB tree contained in the MTA, including IPCablecom defined MIB modules, and vendor defined MIB modules for IPCablecom.

1.3.6.1 /* Full Internet MIB Tree*/

The NotifyView MUST consist of the MTA MIB tree, MIB-2 System MIB tree and the snmpTrapOID MIB. It MAY include vendor defined MIB modules.

1.3.6.1.4.1.4491.2.2.1 /* MTA mib tree*/
1.3.6.1.2.1.1 /* MIB-2 system mib tree */
1.3.6.1.6.3.1.1.4.1.0 /* snmpTrapOID mib*/

5.3 Functional Requirements

This section describes management functions that are supported by the IPCablecom MIB modules.

5.3.1 IPCablecom Device Provisioning

The IPCablecom 1.0 MIB modules should provide definitions for attributes that are required in the MTA device-provisioning flows. These attributes are documented in the IPCablecom MTA device provisioning specification [2] and include parameters such as CMS identifier, MTA domain name, MTA server addresses, and MTA capabilities. These attributes are defined as configuration file attributes and/or MIB objects as needed.

5.3.2 Security

The IPCablecom MIB modules provides definitions for attributes that are required for security handshake of the MTA and the provisioning server. These attributes include certificates and signatures.

5.3.3 Voice interfaces

IP Cablecom MIB modules should provide a generic external interface to voice service management attributes. This should be done so as to allow a device to implement proprietary mechanisms for internal control and management of voice interfaces.

5.3.4 Packet Voice Call Signaling

The IPCablecom MIB modules should provide managed objects for the NCS call signaling protocol. Examples of attributes that have to be supported for packet voice call signaling include:

- Dial timeouts,
- Distinctive ring patterns,
- Codec capabilities,
- Signaling configuration for voice communication end points,
- Call agent identifier.
5.3.5 Media Packet Transport

The IPCablecom MIB modules do not provide any managed objects to monitor and manage media packet transport. The RTP and RTCP protocols are used for media transport in IPCablecom [29]. The RTP MIB (IETF RFC 2959 [28]) may be used for management of the media transport function of the MTA but this is considered out of scope for IPCablecom 1.0.

5.3.6 Fault Management

The IPCablecom MIB modules should provide objects for the management of network faults and failures. Some of these managed objects and management functions are defined in the IPCablecom MTA MIB [12] and the IPCablecom Signaling MIB [13] specifications. Further definition of default management is out of scope of IPCablecom 1.0.

5.3.7 Performance Management

The IPCablecom MIB modules should provide objects for the management of network performance when used for voice communications. Further definition of performance management is out of scope of IPCablecom 1.0.
6 MIB MODULES AVAILABLE IN AN IPCABLECOM NETWORK

In designing the IPCablecom MIBs Framework, the managed objects present in the other MIB modules implemented by the IPCablecom MTA device were taken into consideration. This section describes the MIB modules that can be present in the IPCablecom MTA, and may be used for IPCablecom management functions. The following table lists the MIB modules that must be present in the IPCablecom MTAs. E-MTAs and S-MTAs MUST implement MIB modules present in Table 2.

Table 2. MIB Modules Implemented by E-MTA and S-MTA

<table>
<thead>
<tr>
<th>MIB Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF MIB</td>
</tr>
<tr>
<td>MIB II</td>
</tr>
<tr>
<td>Ethernet MIB</td>
</tr>
<tr>
<td>Bridge MIB</td>
</tr>
<tr>
<td>IPCablecom 1.0 MTA Device MIB</td>
</tr>
<tr>
<td>IPCablecom 1.0 Signaling MIB</td>
</tr>
<tr>
<td>snmpV2 MIB group</td>
</tr>
</tbody>
</table>

As mentioned before, partitioning of voice and data services and support of both S-MTA and E-MTA has been part of the requirements for design of the IPCablecom MIBs Framework. Figure 3 in the General Requirements section describes possible organizations of the MIB modules in order to meet these requirements.

6.1 DOCSIS MIB Modules

As described in section 5.2, the IPCablecom 1.0 Embedded MTA must support the DOCSIS 1.1 or DOCSIS 2.0 MIB requirements. Refer to the following documents for the normative DOCSIS MIB requirements:

- For DOCSIS 1.1, the MIB module requirements are defined in section 3 of [5].
- For DOCSIS 2.0, the MIB module requirements are defined in section 6 of [11].

6.2 IF MIB

The Interfaces Group MIB (IF MIB) is defined in RFC 2863 [8]. The IF MIB is required for the definition of multiple interfaces in the MTA.

6.3 MIB II

RFC 3418 [15], RFC 2011 [7], and RFC 2013 [14] define the second version of the Management Information Base (MIB-II) for use with network management protocols in TCP/IP-based internet. Not all objects in this MIB are deemed necessary for the IPCablecom MTA device. The IPCablecom 1.0 MIB module only requires the system, interfaces, IP, and transmission objects of MIB II to be present in the MTA.

The system object group contact, administrative, location, and service information regarding the managed node.

6.3.1 sysDescr Requirements

The MTA’s MIB II sysDescr object MUST conform to the format specified in DOCSIS OSSI [5].

6.3.2 sysObjectID Requirements

sysObjectID is defined as follows:

```plaintext
sysObjectID OBJECT-TYPE
SYNTAX   OBJECT IDENTIFIER
```
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The vendor's authoritative identification of the network management subsystem contained in the entity. This value is allocated within the SMI enterprises subtree (1.3.6.1.4.1) and provides an easy and unambiguous means for determining 'what kind of box' is being managed. For example, if vendor 'Flintstones, Inc.' was assigned the subtree 1.3.6.1.4.1.4242, it could assign the identifier 1.3.6.1.4.1.4242.1.1 to its 'Fred Router'."

::= { system 2 }

By using sysObjectID the manager will be able to determine any enterprise specific MIBs which must be used to manage the embedded MTA.

6.3.3 "ifTable" Requirements

IPCablecom ifTable MUST contain information about all IPCablecom endpoints. IfIndex, in case of IPCablecom MTAs MUST start with value of 9 for telephony endpoints and MUST be incremented sequentially and match the physical numbering of the telephony endpoints (Indices 2 through 8 are reserved for future use and the usage of index 1 is defined later in this section.) Each instance of the end-point in an E-MTA MUST have a corresponding entry ("conceptual row") in the "ifTable" MIB Table.

The cable modem part of an embedded MTA MUST adhere to DOCSIS 1.1 and eDOCSIS [9] requirements for MIB compliancy.

For each "conceptual row" in the "ifTable" table that corresponds to a Telephony Endpoint, the following conceptual columns MUST be used:

"ifIndex"
"ifDescr"
"ifType"
"ifAdminStatus"
"ifOperStatus"

Each conceptual row in "ifTable" MUST conform to the "IANAifType-MIB" definition for the IPCablecom interface type:

"ifType" - voiceOverCable (198)
"ifDescr" - "Voice Over Cable Interface"

IfIndex 1 is used to recognize the DOCSIS Cable Modem behind which an MTA is connected and the MIB modules involved are indicated in Tables 3 and 4. In the case of an embedded MTA the tables MUST be adhered to. For standalone MTAs, the MTA MAY choose to follow the same. In case a standalone MTA cannot display the information, ifIndex 1 MUST be left unused. If the standalone MTA is behind a CableHome or other device for its data connectivity it MAY change the ifDescr to reflect the same.

IPCablecom MTAs MUST implement [5], [6], and [7]. IPCablecom implementation MUST conform to the ifTable and ipNetToMediaTable defined below:

Table 3. RFC 2863 ifTable, MIB-Object Details for embedded MTA Device Interfaces

<table>
<thead>
<tr>
<th>RFC-2863 MIB-Object Details for MTA Device Interface</th>
<th>MTA Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>IfIndex</td>
<td>1</td>
</tr>
<tr>
<td>ifDescr: MUST match the text provided in the next column.</td>
<td>"DOCSIS Embedded Interface "</td>
</tr>
<tr>
<td>IfType</td>
<td>other(1)</td>
</tr>
<tr>
<td>IfMtu</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 4. RFC 2011 ipNetToMedia MIB-Object Details for eMTA Device Interfaces

<table>
<thead>
<tr>
<th>RFC-2011 MIB-Object details for MTA Devices Interfaces</th>
<th>CM Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>IpNetToMediaIfIndex</td>
<td>1</td>
</tr>
<tr>
<td>IpNetToMediaPhysAddress</td>
<td>CM MAC Address</td>
</tr>
<tr>
<td>IpNetToMediaNetAddress</td>
<td>Acquired CM IP address</td>
</tr>
<tr>
<td>IpNetToMediaType</td>
<td>Static(4)</td>
</tr>
<tr>
<td>IfIndex</td>
<td>1</td>
</tr>
</tbody>
</table>

6.4 Ethernet MIB

The Ethernet MIB specifies the definitions of managed objects for the Ethernet-like interfaces (RFC 3665 [27]).
6.5 IPCablecom Signaling MIB

The IPCablecom Signaling MIB module is defined in [13]. It describes Call Signaling information for the MTA device provisioning and configuration. The IPCablecom Signaling MIB module is registered under the CableLabs private enterprise MIB under the IPCablecom Project branch (clabProjPacketCable).

The IPCablecom Signaling MIB module contains general configuration information that applies to the Network Call Signaling (NCS) protocol [16] on a per MTA device basis. This data only provides the means to provision call signaling parameters on a device basis.

The IPCablecom Signaling MIB module also defines managed objects applicable on a per endpoint basis. The NCS endpoint table (pktcSigEndPntConfigTable) contains specific NCS endpoint configuration information. This data only provides the means to provision network call signaling per endpoint.

6.5.1 MTA SIGNALING MIB General Configuration Information

The MTA SIGNALING MIB contains general configuration information that applies to network call signaling on a device basis.

This data only provides the means to provision call signaling on a device basis.

6.5.2 MTA NCS MIB per Endpoint Data

The MTA NCS MIB contains a per endpoint table. This table contains general configuration information that applies to network call signaling on a per endpoint basis. This information is also found in the configuration file defined in the IPCablecom NCS specification [16]. This data only provides the means to provision network call signaling per endpoint.

6.6 IPCablecom MTA MIB Module

The IPCablecom MTA MIB module is defined in [12]. It describes data for provisioning the MTA device. The IPCablecom MTA MIB module is registered under the CableLabs private enterprise MIB under the IPCablecom Project branch (clabProjPacketCable).

The IPCablecom MTA MIB module contains general configuration information to provision the MTA device. These objects describe the provisioning data for the required servers, the MTA security information.
7 IPCABLECOM MIB MODULE IMPLEMENTATION

This section describes a reference implementation of the MIB modules in an IPCablecom device. Given that only E-MTA is supported for the IPCablecom 1.0 release, we will only consider E-MTA type implementations in this section.

7.1 MTA Components

Figure 4 below shows the components of a typical MTA.

![Figure 4. MTA Components](image)

As shown here the MTA components can be organized into separate areas, i.e., packet based protocols, which run on top of IP and the voice subsystem, which consists of DSP engines and their associated software. MIB modules that are implemented in the MTA have to be organized so as to facilitate this separation. IPCablecom 1.0 MIB modules specifies functions for the packet based protocol section of the MTA. As of this writing there are no analog voice MIB modules specified for the MTA.

NOTE: Please refer to the IPCablecom Security Specification [17] for the security protocols.
7.2 MIB Layering

Figure 5 below describes the MIB layering model. The two stacks represent the packet network and analog voice sections of the MTA. On the packet network side MIB layering follows the same layering model as the protocol stacks.

In the context of voice communications, MIB modules can be layered into the physical layer attributes, which deal with the voice interface, and the telephone channel attributes which deal with voice signaling. Note that IPCablecom 1.0 does not specify any MIB modules for the telephone side of the MTA.
Appendix I Bibliography (Informative)

[16] ANSI/SCTE 24-03 2016, IPCablecom 1.0 Part 3: Network Call Signaling Protocol for the Delivery of Time-
Critical Services over Cable Television Using Data Modems

[18] ANSI/SCTE 24-04 2016, IPCablecom 1.0 Part 4: Dynamic Quality of Service for the Provision of Real-Time
Services over Cable Television Networks Using Data Modem

(SNMP).

[23] IETF RFC 3414, User-based Security Model (USM) for version 3 of the Simple Network Management
Protocol (SNMPv3).

(SNMP).

[26] IETF RFC 1493, Definitions of Managed Objects for Bridges.

[28] IETF RFC 2959, Real-Time Transport Protocol Management Information Base

[29] ANSI/SCTE 24-02 2016, IPCablecom 1.0 Part 2: Audio Codec Requirements for the Provision of Bi-
directional Audio Service Over Cable Television Networks Using Cable Modems